Automatic Estimation of Epipolar Geometry

Problem Statement

Given Image pair

Find The fundamental matrix F and correspondences $x_i \leftrightarrow x'_i$.

- Compute image points
- Compute correspondences
- Compute epipolar geometry

Robust line estimation

Fit a line to 2D data containing outliers

There are two problems:

(i) a line fit to the data $\min_1 \sum_i d^2_{li}$; and,

(ii) a classification of the data into inliers (valid points) and outliers.

RANdom SAmple Consensus (RANSAC)

[Fischler and Bolles, 1981]

Objective Robust fit of a model to a data set S which contains outliers.

Algorithm

(i) Randomly select a sample of n data points from S and instantiate the model from this subset.

(ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of the sample and defines the inliers of S.

(iii) If the size of S_i (the number of inliers) is greater than some threshold T, re-estimate the model using all the points in S_i and terminate.

(iv) If the size of S_i is less than T, select a new subset and repeat the above.

(v) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i.
Robust ML estimation

An improved fit by

- A better minimal set
- Robust MLE: instead of \(\min \sum_i d_{ij}^2 \)
 \[\min \sum_i \gamma(d_{ij}) \quad \text{with} \quad \gamma(e) = \begin{cases} e^2 & e^2 < t^2 \text{ inlier} \\ t^2 & e^2 \geq t^2 \text{ outlier} \end{cases} \]

Feature extraction: “Corner detection”

Interest points [Harris]

- 100s of points per image

Correlation matching

- Match each corner to most similar looking corner in the other image
- Many wrong matches (10-50%), but enough to compute the fundamental matrix.

Correspondences consistent with epipolar geometry

- Use RANSAC robust estimation algorithm
- Obtain correspondences \(x_i \leftrightarrow x'_i \) and \(F \)
- Guided matching by epipolar line
- Typically: final number of matches is about 200-250, with distance error of \(\sim 0.2 \) pixels.
Automatic Estimation of F and correspondences

Algorithm based on RANSAC [Torr]

(i) Interest points: Compute interest points in each image.

(ii) Putative correspondences: use cross-correlation and proximity.

(iii) RANSAC robust estimation:
Repeat
 (a) Select random sample of 7 correspondences
 (b) Compute F
 (c) Measure support (number of inliers)
Choose the F with the largest number of inliers.

(iv) MLE: re-estimate F from inlier correspondences.

(v) Guided matching: generate additional matches.

How many samples?

For probability p of no outliers:
$$N = \log(1 - p)/\log(1 - (1 - \epsilon)^s)$$

- N, number of samples
- s, size of sample set
- ϵ, proportion of outliers

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Proportion of outliers ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>5% 10% 20% 25% 30% 40% 50%</td>
</tr>
<tr>
<td>2</td>
<td>2 2 3 4 5 7 11</td>
</tr>
<tr>
<td>3</td>
<td>2 3 5 6 8 13 23</td>
</tr>
<tr>
<td>4</td>
<td>2 3 6 8 11 22 47</td>
</tr>
<tr>
<td>5</td>
<td>3 4 8 12 17 38 95</td>
</tr>
<tr>
<td>6</td>
<td>3 4 10 16 24 63 191</td>
</tr>
<tr>
<td>7</td>
<td>3 5 13 21 35 106 382</td>
</tr>
<tr>
<td>8</td>
<td>3 6 17 29 51 177 766</td>
</tr>
</tbody>
</table>

e.g. for $p = 0.95$

<table>
<thead>
<tr>
<th>Number of inliers</th>
<th>$1 - \epsilon$</th>
<th>Adaptive N</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2%</td>
<td>20028244</td>
</tr>
<tr>
<td>10</td>
<td>3%</td>
<td>2595658</td>
</tr>
<tr>
<td>44</td>
<td>16%</td>
<td>6922</td>
</tr>
<tr>
<td>58</td>
<td>21%</td>
<td>2291</td>
</tr>
<tr>
<td>73</td>
<td>26%</td>
<td>911</td>
</tr>
<tr>
<td>151</td>
<td>56%</td>
<td>43</td>
</tr>
</tbody>
</table>

Adaptive RANSAC

- $N = \infty$, sample_count= 0.
- While $N > \text{sample_count}$ Repeat
 - Choose a sample and count the number of inliers.
 - Set $\epsilon = 1 - (\text{number of inliers})/\text{(total number of inliers)}$
 - Set N from ϵ with $p = 0.99$.
 - Increment the sample_count by one.
- Terminate.

This page left empty
Part 2: Three-view and Multiple-view Geometry

Computing a Metric Reconstruction

Given only image points and their correspondence, what can be determined?

Two View Reconstruction Ambiguity

Given: image point correspondences $x_i \leftrightarrow x'_i$,
compute a reconstruction:

$$\{P, P', X_i\} \quad \text{with} \quad x_i = PX_i \quad x'_i = P'X_i$$

Ambiguity

$$x_i = PX_i = P\ H(H)^{-1} \ X_i = \hat{P}\hat{X}_i$$
$$x'_i = P'X_i = P'\ H(H)^{-1} \ X_i = \hat{P}'\hat{X}_i$$

$\{\hat{P}, \hat{P}', \hat{X}_i\}$ is an equivalent Projective Reconstruction.

Metric Reconstruction

Correct: angles, length ratios.
Algebraic Representation of Metric Reconstruction

Compute \mathbb{H}

$$\begin{bmatrix} P_1, P_2, ..., P^m_i \end{bmatrix} \xrightarrow{\mathbb{H}} \begin{bmatrix} P^1_i, P^2_i, ..., P^m_i, X^M_i \end{bmatrix}$$

Projective Reconstruction \quad Metric Reconstruction

- Remaining ambiguity is rotation (3), translation (3) and scale (1).
- Only 8 parameters required to rectify entire sequence ($15 - 7 = 8$).

How?
- Calibration points: position of 5 scene points.
- Scene geometry: e.g. parallel lines/planes, orthogonal lines/planes, length ratios.
- Auto-calibration: e.g. camera aspect ratio constant for sequence.

Direct Metric Reconstruction

Use 5 or more 3D points with known Euclidean coordinates to determine \mathbb{H}

Projective Reconstruction

![Projective Reconstruction Diagram]

Stratified Reconstruction

Given a projective reconstruction $\{p^j_i, X_i\}$, compute a metric reconstruction via an intermediate affine reconstruction.

(i) affine reconstruction: Determine the vector p which defines π_∞. An affine reconstruction is obtained as $\{p^j_{HP}, H_P^{-1}X_i\}$ with

$$H_P = \begin{bmatrix} 1 & 0 \\ -p^T & 1 \end{bmatrix}$$

(ii) Metric reconstruction: is obtained as $\{p^j_{HA}, H_A^{-1}X_A\}$ with

$$H_A = \begin{bmatrix} K & 0 \\ 0^T & 1 \end{bmatrix}$$
Stratified Reconstruction

- Start with a projective reconstruction.
- Find transformation to upgrade to affine reconstruction.
 - Equivalent to finding the plane at infinity.
- Find transformation to upgrade to metric (Euclidean) reconstruction.
 - Equivalent to finding the “absolute conic”
- Equivalent to camera calibration
 - If camera calibration is known then metric reconstruction is possible.
 - Metric reconstruction implies knowledge of angles – camera calibration.

Anatomy of a 3D projective transformation

- General 3D projective transformation represented by a 4×4 matrix.

$$
H = \begin{bmatrix}
 sR & t \\
 v^T & 1
\end{bmatrix}
= \begin{bmatrix}
 sR & t \\
 1 & 1
\end{bmatrix}
\begin{bmatrix}
 K & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 I \\
 v^T & 1
\end{bmatrix}
= \text{metric} \times \text{affine} \times \text{projective}
$$

Reduction to affine

(i) Apply the transformations one after the other:
- Projective transformation – reduce to affine ambiguity
 $$
 \begin{bmatrix}
 I \\
 v^T & 1
 \end{bmatrix}
 $$
- Affine transformation – reduce to metric ambiguity
 $$
 \begin{bmatrix}
 K \\
 1
 \end{bmatrix}
 $$
- Metric ambiguity of scene remains

Affine reduction using scene constraints - parallel lines
Reduction to affine

Other scene constraints are possible:
- Ratios of distances of points on line (e.g. equally spaced points).
- Ratios of distances on parallel lines.
- Points lie in front of the viewing camera.
 - Constrains the position of the plane at infinity.
 - Linear-programming problem can be used to set bounds on the plane at infinity.
 - Gives so-called “quasi-affine” reconstruction.

Common calibration of cameras.
- With 3 or more views, one can find (in principle) the position of the plane at infinity.
- Iteration over the entries of projective transform: \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
- Not always reliable.
- Generally reduction to affine is difficult.

Metric Reconstruction

Assume plane at infinity is known.
- Wish to make the step to metric reconstruction.
- Apply a transformation of the form \[
\begin{bmatrix}
K \\
1
\end{bmatrix}
\]
- Linear solution exists in many cases.
The Absolute Conic

- Absolute conic is an imaginary conic lying on the plane at infinity.
- Defined by
 \[\Omega : X^2 + Y^2 + Z^2 = 0 \; ; \; T = 0 \]
- Contains only imaginary points.
- Determines the Euclidean geometry of the space.
- Represented by matrix \(\Omega = \text{diag}(1, 1, 1, 0) \).
- Image of the absolute conic (IAC) under camera \(\mathbf{p} = K[R \mid t] \) is given by \(\omega = (KK^T)^{-1} \).
- Basic fact: \(\omega \) is unchanged under camera motion.

Using the infinite homography

(i) When a camera moves, the image of a plane undergoes a projective transformation.
(ii) If we have affine reconstruction, we can compute the transformation \(\mathcal{H} \) of the plane at infinity between two images.
(iii) Absolute conic lies on the plane at infinity, but is unchanged by this image transformation:
 (iv) Transformation rule for dual conic \(\omega^* = \omega^{-1} \).
 \[\omega^* = H_j\omega^*H_j^T \]
 (v) Linear equations on the entries of \(\omega^* \).
 (vi) Given three images, solve for the entries of \(\omega^* \).
 (vii) Compute \(K \) by Choleski factorization of \(\omega^* = KK^T \).

Example of calibration

Images taken with a non-translating camera:

Mosaiced image showing projective transformations
Computation of κ

Calibration matrix of camera is found as follows:

- Compute the homographies (2D projective transformations) between images.
- Form equations
 \[\omega^* = H_{ij} \omega^* H_{ij}^\top \]
- Solve for the entries of ω^*
- Choleski factorization of $\omega^* = \kappa K^\top$ gives κ.

Affine to metric upgrade

Principal is the same for non-stationary cameras once principal plane is known.

- H_{ij} is the "infinite homography" (i.e. via the plane at infinity) between images i and j.
- May be computed directly from affinely-correct camera matrices.
- Given camera matrices
 \[P_i = [M_i | t_i] ; P_j = [M_j | t_j] \]
- Infinite homography is given by
 \[H_{ij} = M_i M_j^{-1} \]
- Algorithm proceeds as for fixed cameras.

Changing internal camera parameters

The previous calibration procedure (affine-to-metric) may be generalized to case of changing internal parameters.

See paper tomorrow given by Agapito.
Nice Video

Nice Calibration Results – Focal Length

Nice Calibration Results – Pan angle

Nice Calibration Results – Tilt angle
Nice Calibration Results – Focal Length

Keble Calibration Results – Focal Length

Keble College Video

< Video Here >

Keble Calibration Results – Pan angle
The Trifocal Tensor

(i) Defined for three views.
(ii) Plays a similar rôle to Fundamental matrix for two views.
(iii) Unlike fundamental matrix, trifocal tensor also relates lines in three views.
(iv) Mixed combinations of lines and points are also related.

Geometry of three views

Point-line-line incidence.

• Correspondence \(x \leftrightarrow l' \leftrightarrow l'' \)

Geometry of three views . . .

• Let \(I^{(1)} \) and \(I^{(2)} \) be two lines that meet in \(x \).
• General line \(L \) back-projects to a plane \(I^{(1)}P \).
• Four plane are \(I^{(1)}P, I^{(2)}P', I'P' \) and \(I''P'' \).
• The four planes meet in a point.
The trifocal relationship

Four planes meet in a point means determinant is zero.

\[
\begin{vmatrix}
 l^{(1)T} p^r \\
 l^{(2)T} p^r \\
 l^{(3)T} p^r \\
 l^{(4)T} p^r \\
\end{vmatrix} = 0
\]

- This is a linear relationship in the line coordinates.
- Also (less obviously) linear in the entries of the point \(x = l^{(1)} \times l^{(2)} \).

This is the trifocal tensor relationship.

Tensor Notation

Point coordinates.

- Consider basis set \((e_1, e_2, e_3) \).
- Point is represented by a vector \(x = (x^1, x^2, x^3)^T \).
- New basis : \(\mathbf{e}_j = \sum_i H_{ij} \mathbf{e}_i \).
- With respect to new basis \(x \) represented by
 \[
 \hat{x} = (\hat{x}^1, \hat{x}^2, \hat{x}^3) \text{ where } \hat{x} = H^{-1} x
 \]
- If basis is transformed according to \(H \), then point coordinates transform according to \(H^{-1} \).
- Terminology : \(x^i \) transforms contravariantly.
- Use upper indices for contravariant quantities.

Line coordinates

- Line is represented by a vector \(l = (l_1, l_2, l_3) \).
- In new coordinate system \(\mathbf{e}_j \), line has coordinate vector \(\mathbf{l} \),
 \[
 \mathbf{l}^T = \mathbf{H} \mathbf{l}
 \]
- Line coordinates transform according to \(\mathbf{H} \).
- Preserves incidence relationship. Point lies on line if :
 \[
 \mathbf{l}^T \hat{x} = \mathbf{H}^{-1} x = \mathbf{l} \hat{x} = 0
 \]
- Terminology : \(l_j \) transforms covariantly.
- Use lower indices for covariant quantities.

Summation notation

- Repeated index in upper and lower positions implies summation.

Example

Incidence relation is written \(l_i x^i = 0 \).

Transformation of covariant and contravariant indices

Contravariant transformation

\[
\hat{x}^j = (H^{-1})^j_i x^i
\]

Covariant transformation

\[
\hat{l}_j = \mathbf{H}_j^i l_i
\]
More transformation examples

Camera mapping has one covariant and one contravariant index: P^j_i. Transformation rule $\hat{P} = G^{-1} PF$ is

$$\hat{P}_i^j = (G^{-1})_s^i P^s_r F^r_i$$

Trifocal tensor T_{ij}^k has one covariant and two contravariant indices.

Transformation rule:

$$\hat{T}_{ij}^k = F^r_i (G^{-1})_s^j (H^{-1})_s^k T_{rs}^t$$

The ϵ tensor

Tensor ϵ_{rst}:

- Defined for $r, s, t = 1, \ldots, 3$

 $\epsilon_{rst} = 0$ unless r, s and t are distinct

 $\epsilon_{rst} = +1$ if rst is an even permutation of 123

 $\epsilon_{rst} = -1$ if rst is an odd permutation of 123

- Related to the cross-product:

 $$c = a \times b \iff c_i = \epsilon_{ijk}a^j b^k.$$

Basic Trifocal constraint

Basic relation is a point-line-line incidence.

- Point x^i in image 1
- lines l'_j and l''_k in images 2 and 3.
Derivation of the basic three-view relationship

- Line \(l_i \) back-projects to plane \(l_i P^i \) where \(P^i \) is \(i \)-th row.
- Four planes are coincident if
 \[
 (l^{(1)}_r P^r) \land (l^{(2)}_s P^s) \land (l^{(j)}_t P^{jt}) \land (l^{(n)}_k P^{nk}) = 0
 \]
 where 4-way wedge \(\land \) means determinant.
- Thus
 \[
 l^{(1)}_r l^{(2)}_s l^{(n)}_k P^r \land P^s \land P^{jt} \land P^{nk} = 0
 \]
- Multiply by constant \(\epsilon^{s i} \epsilon_{r s i} \) gives
 \[
 \epsilon^{s i} l^{(1)}_r l^{(2)}_s l^{(n)}_k \epsilon_{r s i} P^r \land P^s \land P^{jt} \land P^{nk} = 0
 \]
- Intersection (cross-product) of \(l^{(1)}_r \) and \(l^{(2)}_s \) is the point \(x^i \):
 \[
 l^{(1)}_r l^{(2)}_s \epsilon^{s i} = x^i
 \]

Definition of the trifocal tensor

Basic relationship is

\[
x^i l^t_j l^s_k T^i_{jk} = 0
\]

Define

\[
\epsilon_{r s i} P^r \land P^s \land P^{jt} \land P^{nk} = T^i_{jk}
\]

Point-line-line relation is

\[
x^i l^t_j l^s_k T^i_{jk} = 0
\]

\(T^i_{jk} \) is covariant in one index \((i) \), contravariant in the other two.

Line Transfer

Basic relation is

\[
x^i l^t_j l^s_k T^i_{jk} = 0
\]

Interpretation:
- Back projected ray from \(x \) meets intersection of back-projected planes from \(l' \) and \(l'' \).
- Line in space projects to lines \(l' \) and \(l'' \) and to a line passing through \(x \).

Line transfer

- Denote \(l_i = l^t_j l^s_k T^i_{jk} \)
- See that \(x^i l_i = 0 \) when \(x^i \) lies on the projection of the intersection of the planes.
- Thus \(l_i \) represents the transferred line corresponding to \(l^t_j \) and \(l^s_k \).
- We write
 \[
 l_i \approx l^t_j l^s_k T^i_{jk}
 \]
- Cross-product of the two sides are equal:
 \[
 l_i \epsilon^{r i} l^t_j l^s_k T^i_{jk} = 0^s
 \]
- Derived from basic relation \(x^i l^t_j l^s_k T^i_{jk} \) by replacing \(x^i \) by \(l_i \epsilon^{r i} \).
Point transfer via a plane

- Line l' backprojects to a plane π'.
- Ray from x meets π' in a point X.
- This point projects to point x'' in the third image.
- For fixed l', mapping $x \mapsto x''$ is a homography.

Point-transfer and the trifocal tensor

- If l'' is any line through x'', then trifocal condition holds.
 $$l''_i (x^i l'_j T^{ijk}_i) = 0$$
- $x^i l'_j T^{ijk}_i$ must represent the point x^{nk}.
 $$x^{nk} \approx x^i l'_j T^{ijk}_i$$
- Alternatively (cross-product of the two sides)
 $$x^i l'_j \epsilon^{krs} x^{nr} T^{ijk}_i = 0$$
- Derived from basic relation $x^i l'_j T^{ijk}_i$ by replacing l''_k by $x'' \epsilon^{krs}$.

Contraction of trifocal tensor with a line

- Write $H^k_i = l'_j T^{ijk}_i$
- Then $x''^{nk} = H^k_i x^i$.
- H^k_i represents the homography from image 1 to image 3 via the plane of the line l'_j.

Three-point correspondence

- Given a triple correspondence $x \leftrightarrow x' \leftrightarrow x''$
 - Choose any lines l' and l'' passing through x' and x''
 - Trifocal condition holds
 $$x^i l'_j l''_k T^{ijk}_i = 0$$
Geometry of the three-point correspondence

- 4 choices of lines \(\Rightarrow\) 4 equations.
- May also be written as
 \[x^i x^k x^{i\prime} x^{i\prime\prime} T_{ij}^{jk} = 0 \]
- Gives 9 equations, only 4 linearly independent.

Summary of incidence relations

(i) Point in first view, lines in second and third
\[l'_j l''_k T_{ij}^{jk} x^i = 0 \]
(ii) Point in first view, point in second and line in third
\[x^i x^j l''_k e_{jpr} T_{ij}^{pk} = 0 \]
(iii) Point in first view, line in second and point in third
\[x^i l'_j x^{i\prime} e_{kqs} T_{ij}^{jq} = 0 \]
(iv) Point in three views
\[x^i x^j x^{i\prime} e_{jpr} e_{kqs} T_{ij}^{pq} = 0 \]

Summary of transfer formulas

(i) Point transfer from first to third view via a plane in the second.
\[x''_k = x'^i l'_j T_{ij}^{jk} \]
(ii) Point transfer from first to second view via a plane in the third.
\[x'^i = x'^i l''_k T_{ij}^{jk} \]
(iii) Line transfer from third to first view via a plane in the second; or, from second to first view via a plane in the third.
\[l_i = l'_j l''_k T_{ij}^{jk} \]

Degeneracies of line transfer

- Degeneracy of line transfer for corresponding epipolar lines.
- When the line lies in an epipolar plane, its position can not be inferred from two views.
- Hence it can not be transferred to a third view.
Degeneracy of point transfer

Transferring points from images 1 and 2 to image 3:

Only points that can not be transferred are those points on the baseline between centres of cameras 1 and 2.

For transfer with fundamental matrix, points in the trifocal plane cannot be transferred.

Finding epipolar lines

To find the epipolar line corresponding to a point x_i^j:

- Transfer to third image via plane back-projected from l_j^i:
 \[x_k'' = x_i^{j;k} l_j^i \]
- Epipolar line satisfies $l_k'' x_k'' = 0$ for each such x_k''.
- For all l_j^i:
 \[x_i^{j;k} l_k'' T_i^{j;k} = 0 \]
- Epipolar line corresponding to x_i^j found by solving
 \[l_k'' (x_i^{j;k}) = 0 \]

Result: Epipole is the common perpendicular to the null-space of all $x_i^{j;k}$.

Contraction on a point

In $x_j'' \approx x_i^{j;k} T_i^{j;k}$ write $x_i T_i^{j;k} = G^{j;k}$

- Represents a mapping from line l_j'' to the point x_i^j:
 \[x_i'' \approx G^{j;k} l_j'' = (x_i T_i^{j;k}) l_j'' \]
- As l_j'' varies x_i'' traces out the projection of the ray through x_i.
- Epipolar line in third image.
- Epipole is the intersection of these lines for varying x_i.
Extraction of camera matrices from trifocal tensor

Formula for Trifocal tensor

- Trifocal tensor is independent of projective transformation.
- May assume that first camera is \([I \mid 0]\).
- Other cameras are \([A|a_i]\) and \([B|b_i]\).
- Formula

\[
T_{i}^{jk} = \alpha_i^j b_i^k - \alpha_i^j b_i^k
\]

- Note : \(a_i\) and \(b_i\) represent the epipoles:
 - Centre of the first camera is \((0, 0, 0, 1)\).
 - Epipole is image of camera centre.

\[
a_i = [A|a_i]
\]

Where does this formula come from?

Formula for trifocal tensor

\[
T_{i}^{jk} = \epsilon_{rsi} P^r \wedge P^s \wedge P^{ij} \wedge P^{ik}
\]

\[
= 2 \det \left[
\begin{array}{c}
\sim P^i \\
\sim P^j \\
\sim P^k
\end{array}
\right]
\]

Notation : \(\sim P^i\) means omit row \(i\).

Example, when \(i = 1\)

\[
T_{i}^{jk} = \det \left[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\alpha_i^j & \alpha_i^j & \alpha_i^j & \alpha_i^j \\
b_i^k & b_i^k & b_i^k & b_i^k
\end{array}
\right]
\]

\[
= \alpha_i^j b_i^k - \alpha_i^j b_i^k
\]

Extraction of the camera matrices.

Basic formula

\[
T_{i}^{jk} = \alpha_i^j b_i^k - \alpha_i^j b_i^k
\]

- Entries of \(T_{i}^{jk}\) are quadratic in the entries of camera matrices.
- But if epipoles \(\alpha_i^j\) and \(b_i^k\) are known, entries are linear.

Strategy:

- Estimate the epipoles.
- Solve linearly for the remaining entries of \(A\) and \(B\).
- 27 equations in 18 unknowns.

Exact formulae are possible, but not required for practical computation.
Matrix formulas involving trifocal tensor

Given the trifocal tensor written in matrix notation as \([T_1, T_2, T_3]\).

(i) **Retrieve the epipoles** \(e_{21}, e_{31}\)
Let \(u_i\) and \(v_i\) be the left and right null vectors respectively of \(T_i\), i.e. \(T_i^T u_i = 0\), \(T_i v_i = 0\). Then the epipoles are obtained as the null-vectors to the following \(3 \times 3\) matrices

\[
[u_1, u_2, u_3] e_{21} = 0 \quad [v_1, v_2, v_3] e_{31} = 0
\]

(ii) **Retrieve the fundamental matrices** \(F_{12}, F_{13}\)

\[
F_{12} = [e_{21}] [T_1, T_2, T_3] e_{31} \quad F_{13} = [e_{31}] [T_1^T, T_2^T, T_3^T] e_{21}
\]

(iii) **Retrieve the camera matrices** \(P', P''\) (with \(P = [I | 0]\))

Normalize the epipoles to unit norm. Then

\[
P' = ([I - e_{21} e_{21}^T] [T_1, T_2, T_3] e_{31} \mid e_{21}) \quad P'' = [-[T_1^T, T_2^T, T_3^T] e_{21} \mid e_{31}]
\]
Computation of the trifocal tensor

Linear equations for the trifocal tensor

Given a 3-point correspondence
\[x \leftrightarrow x' \leftrightarrow x'' \]

The trifocal tensor relationship is
\[x^i x'^j x''^k \epsilon_{jqu} \epsilon_{krv} T_{i}^{u} = 0_{uv} \]

- Relationship is linear in the entries of \(T \).
- each correspondence gives 9 equations, 4 linearly independent.
- \(T \) has 27 entries – defined up to scale.
- 7 point correspondences give 28 equations.
- Linear or least-squares solution for the entries of \(T \).

<table>
<thead>
<tr>
<th>Correspondence</th>
<th>Relation</th>
<th>number of equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>three points</td>
<td>[x^i x'^j x''^k \epsilon_{jqu} \epsilon_{krv} T_{i}^{u} = 0_{uv}]</td>
<td>4</td>
</tr>
<tr>
<td>two points, one line</td>
<td>[x^i x'^j l'^p q \epsilon_{jqu} T_{i}^{p} = 0_{u}]</td>
<td>2</td>
</tr>
<tr>
<td>one point, two lines</td>
<td>[x^i l'^p q \epsilon_{jqu} T_{i}^{p} = 0]</td>
<td>1</td>
</tr>
<tr>
<td>three lines</td>
<td>[l'^p q l'^u v \epsilon_{jqu} T_{i}^{p} = 0_{w}]</td>
<td>2</td>
</tr>
</tbody>
</table>

Trilinear Relations

Solving the equations

Given 26 equations we can solve for the 27 entries of \(T \).
- Need 7 point correspondences
- or 13 line correspondences
- or some mixture.

Total set of equations has the form
\[E T = 0 \]

- With 26 equations find an exact solution.
- With more equations, least-squares solution.
Solving the equations ...

- Solution:
 - Take the SVD: $E = UV^T$.
 - Solution is the last column of V corresponding to smallest singular value).
 - Minimizes $||Et||$ subject to $||t|| = 1$.
- Normalization of data is \textit{essential}.

What are the constraints

Some of the constraints are easy to find.

(i) Each T^{jk}_i must have rank 2.
(ii) Their null spaces must lie in a plane.
(iii) This gives 4 constraints in all.
(iv) 4 other constraints are not so easily formulated.

Constraints

- T has 27 entries, defined only up to scale.
- Geometry only has 18 degrees of freedom.
 - 3 camera matrices account for $3 \times 11 = 33$ dof.
 - Invariant under 3D projective transformation (15 dof).
 - Total of 18 dof.
- T must satisfy several constraints to be a geometrically valid trifocal tensor.
- To get good results, one must take account of these constraints (cf Fundamental matrix case).

Constraints through parametrization.

- Define T in terms of a set of parameters.
- Only valid T's may be generated from parameters.

Recall formula for T:

$$T^{jk}_i = a^i_j b^k_l - a^j_i b^k_l$$

- Only valid trifocal tensors are generated by this formula.
- Parameters are the entries a^i_j and b^k_l.
- Over-parametrized: 24 parameters in all.
Algebraic Estimation of T

Similar to the algebraic method of estimation of F.

Minimize the algebraic error $||Et||$ subject to

(i) $||t|| = 1$
(ii) t is the vector of entries of T.
(iii) T is of the form $T^i_{jk} = a^j_i b^k_i - a^k_j b^i_i$.

Difficulty is this constraint is a quadratic constraint in terms of the parameters.

Minimization knowing the epipoles ...

Minimization problem

Minimize $||Et||$ subject to $||t|| = 1$.

becomes

Minimize $||E\mathbf{p}||$ subject to $||\mathbf{p}|| = 1$.

- Exactly the same problem as with the fundamental matrix.
- Linear solution using the SVD.

Algebraic estimation of T

Complete algebraic estimation algorithm is

(i) Find a solution for T using the normalized linear (7-point) method.
(ii) Estimated T will not satisfy constraints.
(iii) Compute the two epipoles a_i and b_i.
 (a) Find the left (respectively right) null spaces of each T^i_{jk}.
 (b) Epipole is the common perpendicular to the null spaces.
(iv) Reestimate T by algebraic method assuming values for the epipoles.

Minimization knowing the epipoles ...

Camera matrices $[\mathbf{I} | \mathbf{0}], [\mathbf{A}|a_i]$, and $[\mathbf{B}|b_i]$.

$$T^i_{jk} = a^j_i b^k_i - a^k_j b^i_i$$

As with fundamental matrix, a_i and b_i are the epipoles of the first image.

If a_i and b_i are known, then T is linear in terms of the other parameters. We may write

$$t = G\mathbf{p}$$

- \mathbf{p} is the matrix of 18 remaining entries of camera matrices \mathbf{A} and \mathbf{B}.
- t is the 27-vector of entries of T.
- G is a 27×18 matrix.
Iterative Algebraic Method

Find the trifocal tensor T that minimizes $||Et||$ subject to $||t|| = 1$ and $T_i^{jk} = a_i^t b_j^k - a_i^t b_i^k$.

- **Concept**: Vary epipoles a_i and b_i to minimize the algebraic error $||Et'|| = ||Egp||$.
- **Remark**: Each choice of epipoles a_i and b_i defines a minimum error vector Egp as above.
- Use Levenberg-Marquardt method to minimize this error.
- **Simple** 6×27 minimization problem.
 - 6 inputs – the entries of the two epipoles
 - 27 outputs – the algebraic error vector $Et' = Egp$.
- Each step requires estimation of p using algebraic method.
Automatic Estimation of a Projective Reconstruction for a Sequence

Outline

(i) Projective reconstruction: 2-views, 3-views, N-views
(ii) Obtaining correspondences over N-views

Reconstruction from three views

Given: image point correspondences $x_1 \leftrightarrow x_2 \leftrightarrow x_3$, compute a projective reconstruction:

$$\{p^1, p^2, p^3, X_i\} \text{ with } x_i^j = p^j X_i$$

What is new?

- 3-view tensor: the trifocal tensor
- Compute from 6 image point correspondences.
- Automatic algorithm similar to F. [Torr & Zisserman]

Automatic Estimation of the trifocal tensor and correspondences

(i) Pairwise matches: Compute point matches between view pairs using robust F estimation.
(ii) Putative correspondences: over three views from two view matches.
(iii) RANSAC robust estimation:
Repeat
 (a) Select random sample of 6 correspondences
 (b) Compute T (1 or 3 solutions)
 (c) Measure support (number of inliers)
Choose the T with the largest number of inliers.
(iv) MLE: re-estimate T from inlier correspondences.
(v) Guided matching: generate additional matches.

first frame of video
Projective Reconstruction for a Sequence

(i) Compute all 2-view reconstructions for consecutive frames.
(ii) Compute all 3-view reconstructions for consecutive frames.
(iii) Extend to sequence by hierarchical merging:

(iv) Bundle-adjustment: minimize reprojection error

\[
\min_{\mathbf{P}_j} \sum_{i \in \text{points}} \sum_{j \in \text{frames}} d\left(\mathbf{x}_i^j, \mathbf{p}_j^j \mathbf{x}_i\right)^2
\]

(v) Automatic algorithm [Fitzgibbon & Zisserman]

Cameras and Scene Geometry for an Image Sequence

Given video

- Point correspondence (tracking).
- Projective Reconstruction.

Interest points computed for each frame

- About 500 points per frame

Point tracking: Correlation matching

- 10-50% wrong matches
Point tracking: Epipolar-geometry guided matching

Compute F so that matches **consistent** with epipolar geometry.
- Many fewer false matches, but still a loose constraint.

Point tracking: Trifocal tensor guided matching

Compute trifocal tensor so that matches **consistent** with 3-views.
- Tighter constraint, so even fewer false matches.
- Three views is the last significant improvement.

Reconstruction from Point Tracks

Compute 3D points and cameras from point tracks

- Hierarchical merging of sub-sequences.
- Bundle adjustment.

Application I: Graphical Models

Compute VRML piecewise planar model
Example II: Extended Sequence

140 frames of a 340 frame sequence

a frame of the video

Metric Reconstruction

140 frames of a 340 frame sequence

a frame of the video

Application II: Augmented Reality

Using computed cameras and scene geometry, insert virtual objects into the sequence.

330 frames

3D Insertion

a frame of the video
Further Reading

Some of these papers are available from http://www.robots.ox.ac.uk/~vgg

Acknowledgements

The images in this document were created by Paul Beardsley, Antonio Criminisi, Andrew Fitzgibbon, David Liebowitz, Luc Robert, and Phil Torr.