TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation

Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid

LEAR team, INRIA Rhône-Alpes, Grenoble, France
TagProp

- **Goal:** predict relevance of keywords for images
TagProp

- **Application 1:** Image annotation
 - Propose a list of relevant keywords to assist human annotator
Corel Annotation - Examples

BEP: 100%
Ground Truth: **sun** (1.00), **sky** (1.00), **tree** (1.00), **clouds** (0.99)
Predictions: **sun** (1.00), **sky** (1.00), **tree** (1.00), **clouds** (0.99)

BEP: 100%
Ground Truth: **mosque** (1.00), **temple** (1.00), **stone** (1.00), **pillar** (1.00)
Predictions: **mosque** (1.00), **temple** (1.00), **stone** (1.00), **pillar** (1.00)

BEP: 50%
Ground Truth: **grass** (0.98), **tree** (0.98), **bush** (0.54), **truck** (0.05)
Predictions: **flowers** (1.00), **grass** (0.98), **tree** (0.98), **moose** (0.95)

BEP: 50%
Ground Truth: **herd** (0.99), **grass** (0.98), **tundra** (0.96), **caribou** (0.13)
Predictions: **sky** (0.99), **herd** (0.99), **grass** (0.98), **hills** (0.97)

BEP: 50%
Ground Truth: **mountain** (1.00), **tree** (0.99), **sky** (0.98), **clouds** (0.94)
Predictions: **hillside** (1.00), **mountain** (1.00), **valley** (0.99), **tree** (0.99)
TagProp

- **Application 2:** Keyword based image search
 - Given one or more keywords, propose a list of relevant images

 ![Image of a jet](image.png)
Corel Retrieval - Examples

tiger 100.00 (10)

garden 60.00 (10)

town 22.22 (9)

water, pool 90.00 (10)

beach, sand 25.00 (8)
TagProp

- **Approach:** generalize from a data base of annotated images
1. Related work
2. Metric learning for nearest neighbors
3. Data sets & Feature extraction
4. Results
5. Conclusion
Related Work

- **Latent topic models**
 - Inspired from text-analysis models (pLSA, LDA)
 - Generative model over keywords and image regions
 - Trade-off: overfitting & capacity limited by nr. of topics

- **Other mixture models**
 - Non-parametric KDE over image features

- **Binary classifiers**
 - One classifier for each keyword:
 many classifiers, (no) parameter sharing
 - Many terms with very few examples
Related Work

• Many approaches for image annotation
 - Seen as machine translation [Duygulu et al. '02]
 - Extensions of LDA [Barnard et al. '03]
 - Multiple Bernoulli relevance model [Feng et al. '04]
 - Supervised multiclass labeling [Carneiro et al. '07]
 - Kernel-based ranking [Grangier & Bengio '08]

• Local learning use most similar images to predict keywords: state-of-the-art image annotation results
 - Diffusion of labels over similarity graph [Liu et al. '09]
 - Ad hoc nearest neighbor model [Makadia et al. '08]
 • Simple model, combination of many visual features
Nearest Neighbor Image Annotation

- How to choose the visual distance to define neighbors?
- How many neighbors to consider?
- How to transfer the tags of neighboring images?
Presentation Outline

1. Related work

2. Metric learning for nearest neighbors

3. Data sets & Feature extraction

4. Results

5. Conclusion
A predictive model for keyword relevance

- **Notation**
 - relevance of keyword w for image i, $y_{iw} \in \{+1,-1\}$
 - visual distance between images $d_{ij} \geq 0$

- Use d_{ij} to define weights π_{ij} for a nearest neighbor model

- The model outputs probability of keyword relevance $p(y_{iw}=+1)$
A predictive model for keyword relevance

- **Predictions**: weighted sum over neighbor images

\[p(y_{iw} = +1) = \sum_j \pi_{ij} p(y_{iw} = +1 \mid j) \]
A predictive model for keyword relevance

- Imagine we select image j to predict keyword w of image i

$$p(y_{iw} = +1 | j) = \begin{cases} 1 - \varepsilon & \text{if } y_{iw} = +1 \\ \varepsilon & \text{otherwise} \end{cases}$$
A predictive model for keyword relevance

- **Objective:**
 Maximize likelihood of leave-one-out predictions on training data

\[L = \sum_{i,w} c_{iw} \log p(y_{iw}) \]

- **Optimization:**
 Gradient descent with constraints on parameters to enforce:

\[\pi_{ij} \geq 0, \quad \sum_j \pi_{ij} = 1 \]

- **What about the weights?**
Rank-based weights

- Fixed weight for k-th neighbour: γ_k
- K parameters
- Effective neighborhood size set automatically
Distance-based weights

- Weights π_{ij} depend smoothly on d_{ij}, exponential decrease
 \[\pi_{ij} = \frac{\exp(-\lambda d_{ij})}{\sum_k \exp(-\lambda d_{ik})} \]
 - Single parameter λ: decay rate, effective neighborhood size

- What is the right visual distance?

- Metric learning to linearly combine distances
 \[d_{ij} = w^{(1)} d_{ij}^{(1)} + w^{(2)} d_{ij}^{(2)} + \ldots + w^{(n)} d_{ij}^{(n)} \]
 - One parameter for each ‘base’ distance
Increasing the recall of rare words

- **Keywords with low frequency in database have low recall**
 - Neighbors that have the keyword do not account for enough mass in the weighted sum
 - Systematic low relevance: need to boost it

- **Adjust ‘dynamic range’ per keyword using sigmoid**

 \[x_{iw} = \sum_{j} \pi_{ij} p(y_{iw} = +1 | j) \]

 \[p(y_{iw} = +1) = \sigma(\alpha_w x_{iw} + \beta_w) \]
Some practical issues

- **Objective function and gradient are quadratic in the number of images**
 - We limit the size of neighborhoods to K. The exponential decrease justifies to forget images that are too far anyway.

- **The neighborhood is not fixed when learning metric**
 - We include as many neighbors from each distance as possible.
 - Overlap of neighborhoods allow to use approx. $2K/D$.

- **We use annotation costs to compensate for noisier keyword absences**
 - Balance weight assigned to absences and presences.
Optimization

- **Rank-based:**
 - K parameters
 - concave objective
 - Gradient descent with convex constraints

- **Distance-based weights:**
 - $\#$ parameters = $\#$ base distances
 - Gradient descent with convex constraints

- **Sigmoidal modulation: iterative optimization**
 - Optimize $\{\alpha_w, \beta_w\}$ for all words, concave
 - Optimize the π_{ij}
Presentation Outline

1. Related work
2. Metric learning for nearest neighbors
3. Data sets & Feature extraction
4. Results
5. Conclusion
Data set 1: Corel 5k

- 5000 images: landscape, animals, cities
- Vocabulary of 260 words
- Annotations designed for retrieval
Data set 2: ESP Game

- 20,000 images: photos, drawings, graphs
- Vocabulary of 268 words
- Annotations generated by players of online game
Data set 3: IAPR TC-12

- 20,000 images: touristic photos, sports
- Vocabulary of 291 words
- Annotations extracted from descriptive text (nouns)
Feature extraction

- **Bag-of-words histograms**
 - SIFT [Lowe ’04] and Hue [van de Weijer & Schmid ’06]
 - Dense grid and Harris interest points
 - K-means quantization

- **Global color histograms**
 - Color spaces: RGB, HSV, LAB
 - Each channel quantized in 16 bins

- **Global GIST descriptor** [Oliva & Torralba ’01]

- **Spatial 3x1 partitioning** [Lazebnik et al. ’06]
 - Concatenate histograms from regions
 - Done for all features except GIST
Presentation Outline

1. Related work
2. Metric learning for nearest neighbors
3. Data sets & Feature extraction
4. Results
5. Conclusion
Evaluation measures

Measures computed per keyword, then averaged

- Annotate images with the 5 most likely keywords
 - **Recall**: # ims. correctly annotated / # ims. in ground truth
 - **Precision**: # ims. correctly annotated / # ims. annotated

- **Mean average precision**
Variants of TagProp

<table>
<thead>
<tr>
<th></th>
<th>COREL 5K</th>
<th>IAPR TC-12</th>
<th>ESP Game</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P R</td>
<td>P R</td>
<td>P R</td>
</tr>
<tr>
<td>Rank-based</td>
<td>28% 32%</td>
<td>35% 22%</td>
<td>27% 20%</td>
</tr>
<tr>
<td>Fixed distance</td>
<td>30% 33%</td>
<td>50% 20%</td>
<td>48% 19%</td>
</tr>
</tbody>
</table>

- Distance-based > Rank-based, comparable for COREL
Variants of TagProp

<table>
<thead>
<tr>
<th></th>
<th>COREL 5K</th>
<th>IAPR TC-12</th>
<th>ESP Game</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Rank-based</td>
<td>28%</td>
<td>32%</td>
<td>35%</td>
</tr>
<tr>
<td>Fixed distance</td>
<td>30%</td>
<td>33%</td>
<td>50%</td>
</tr>
<tr>
<td>Fixed with sigmoid</td>
<td>28%</td>
<td>35%</td>
<td>41%</td>
</tr>
</tbody>
</table>

- **Distance-based > Rank-based**, comparable for COREL
- **Sigmoid**: trades precision for recall
Variants of TagProp

<table>
<thead>
<tr>
<th></th>
<th>COREL 5K</th>
<th>IAPR TC-12</th>
<th>ESP Game</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Rank-based</td>
<td>28%</td>
<td>32%</td>
<td>35%</td>
</tr>
<tr>
<td>Fixed distance</td>
<td>30%</td>
<td>33%</td>
<td>50%</td>
</tr>
<tr>
<td>Fixed with sigmoid</td>
<td>28%</td>
<td>35%</td>
<td>41%</td>
</tr>
<tr>
<td>ML with sigmoid</td>
<td>33%</td>
<td>42%</td>
<td>46%</td>
</tr>
</tbody>
</table>

- **Distance-based** > **Rank-based**, comparable for COREL
- **Sigmoid**: trades precision for recall
- **Metric learning**: improves results significantly
Effect of sigmoid, detailed

- Mean recall of words
 - IAPR keywords binned by how many images they occur in
 - ML (light blue), and ML with sigmoid (dark blue)
Comparison to state-of-the-art

<table>
<thead>
<tr>
<th></th>
<th>Feng '04</th>
<th>Makadia '08</th>
<th>TagProp</th>
</tr>
</thead>
<tbody>
<tr>
<td>COREL 5K</td>
<td></td>
<td>+6</td>
<td>+10</td>
</tr>
<tr>
<td>IAPR TC-12</td>
<td></td>
<td>+18</td>
<td>+6</td>
</tr>
<tr>
<td>ESP Game</td>
<td></td>
<td>+17</td>
<td>+2</td>
</tr>
</tbody>
</table>
Retrieval performance on Corel 5k

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Single</th>
<th>Multi</th>
<th>Easy</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grangier ’08</td>
<td>26%</td>
<td>34%</td>
<td>26%</td>
<td>43%</td>
<td>22%</td>
</tr>
<tr>
<td>Fixed distance</td>
<td>31%</td>
<td>41%</td>
<td>30%</td>
<td>49%</td>
<td>27%</td>
</tr>
<tr>
<td>with sigmoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML with sigmoid</td>
<td>36%</td>
<td>46%</td>
<td>35%</td>
<td>55%</td>
<td>32%</td>
</tr>
</tbody>
</table>

- 2241 (multi-word) queries with at least one relevant image
- Easy queries: three or more relevant images
- [D. Gangier and S. Bengio, "A discriminative kernel-based model to rank images from text queries", PAMI 2008]

- **Mean average precision:** +10% overall
- **Metric learning:** improves results significantly
Distance-based weights

- Learned linear combinations are dataset-specific
Comparison to JEC and SVM

- Makadia’08, SVM & Fixed: the same combination of distances
- SVM: one per keyword, Gaussian kernel, $C=100$
- SVM, Fixed and ML: sigmoidal modulation on output scores
Conclusion

- **The main contributions**
 - Probabilistic nearest neighbor model
 - Metric learning to find optimal distance combination
 - Effective neighborhood size set automatically
 - Sigmoidal non-linearity to boost recall of rare words

- **State-of-the-art results**
 - Both on image annotation, and keyword-based retrieval
 - On three different data sets and two evaluation protocols

- **Future work**
 - Learn models specifically for annotation / retrieval
 - Use localization of (some) concepts to improve performance
TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation

Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid

LEAR Team, INRIA Grenoble, France

Online Demo – http://lear.inrialpes.fr/~verbeek