Bayesian Machine Learning for Controlling Autonomous Systems

Marc Deisenroth
Department of Computing
Imperial College London

Department of Computer Science
TU Darmstadt

m.deisenroth@imperial.ac.uk

Talk at University of Oxford
September 30, 2013
Motivation

- Three key challenges in autonomous systems:
 - Modeling.
 - Predicting.
 - Decision making.
Motivation

- Three key challenges in autonomous systems: **Modeling. Predicting. Decision making.**

- Noisy signals and processes
Motivation

- Three key challenges in autonomous systems:
 - **Modeling. Predicting. Decision making.**
- Noisy signals and processes

Increase autonomy: deal with uncertainty

▶ **Bayesian machine learning**
Motivation

- Three key challenges in autonomous systems: **Modeling. Predicting. Decision making.**

- Noisy signals and processes

Increase autonomy: deal with uncertainty

▶ **Bayesian machine learning**
Motivation

- Three key challenges in autonomous systems:
 - Modeling. Predicting. Decision making.
- Noisy signals and processes

Increase autonomy: deal with uncertainty
 ▶ Bayesian machine learning
Motivation

- Three key challenges in autonomous systems:

 Modeling. Predicting. Decision making.

- Noisy signals and processes

Increase autonomy: deal with uncertainty

▶ Bayesian machine learning
Outline

Controller Learning

Reinforcement Learning

Bayesian Optimization
Reinforcement Learning Set-up

\[
x_{t+1} = f(x_t, u_t) + w, \quad u_t = \pi(x_t, \theta)
\]

State \quad Control \quad Policy \quad Policy parameters
Reinforcement Learning Set-up

\[x_{t+1} = f(x_t, u_t) + w, \quad u_t = \pi(x_t, \theta) \]

State \quad Control \quad Policy \quad Policy parameters

Objective

Find policy parameters \(\theta^* \) that minimize the expected long-term cost

\[J(\theta) = \sum_{t=1}^{T} \mathbb{E}[c(x_t)|\theta], \quad p(x_0) = \mathcal{N}(\mu_0, \Sigma_0). \]

Instantaneous cost \(c(x_t) \), e.g., \(\|x_t - x_{\text{target}}\|^2 \)

Typical objective in optimal control and reinforcement learning
(Bertsekas, 2005; Sutton & Barto, 1998)
Model-based Policy Search

Objective
Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$

High-Level Steps:
1. Probabilistic model for transition function f to be robust to model errors
Model-based Policy Search

Objective

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$

High-Level Steps:

1. Probabilistic model for transition function f to be robust to model errors

2. Compute long-term predictions $p(x_1|\theta), \ldots, p(x_T|\theta)$

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Model-based Policy Search

Objective

Minimize expected long-term cost \(J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta] \)

High-Level Steps:

1. Probabilistic model for transition function \(f \) to be robust to model errors
2. Compute long-term predictions \(p(x_1|\theta), \ldots, p(x_T|\theta) \)
3. Policy improvement

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Model-based Policy Search

Objective

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t) | \theta]$

High-Level Steps:

1. Probabilistic model for transition function f to be robust to model errors
2. Compute long-term predictions $p(x_1 | \theta), \ldots, p(x_T | \theta)$
3. Policy improvement
4. Apply controller

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Model-based Policy Search

Objective

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$

High-Level Steps:

1. Probabilistic model for transition function f to be robust to model errors
2. Compute long-term predictions $p(x_1|\theta), \ldots, p(x_T|\theta)$
3. Policy improvement
4. Apply controller

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Model Learning

Model learning problem: Find a function $f : x \mapsto f(x) = y$
Model Learning

Model learning problem: Find a function \(f : x \mapsto f(x) = y \)

Plausible function approximators
Model Learning

Model learning problem: Find a function $f : x \mapsto f(x) = y$

Plausible function approximators

Predictions? Decision Making?
Model Learning

Model learning problem: Find a function $f : x \mapsto f(x) = y$

Plausible function approximators

Predictions? Decision Making? Model Errors!
Model Learning

Model learning problem: Find a function $f : x \mapsto f(x) = y$

Distribution over plausible functions
Model Learning

Model learning problem: Find a function $f : x \mapsto f(x) = y$

Distribution over plausible functions

- Express **uncertainty** about the underlying function
- **Gaussian process** for model learning (Rasmussen & Williams, 2006)
Introduction to Gaussian Processes

- State-of-the-art nonparametric Bayesian regression method
- Probability distribution over functions
- Fully specified by
 - Mean function m (average function)
 - Covariance function k (assumptions on structure)

$$\text{Cov}[f(x_p), f(x_q)] = k(x_p, x_q)$$

Posterior predictive distribution at $x_\hat{}$ is Gaussian:

$$p(f(x_\hat{}) | x_\hat{}, X, y) \sim \mathcal{N}(m(x_\hat{}), \sigma^2)$$
Introduction to Gaussian Processes

- State-of-the-art nonparametric Bayesian regression method
- Probability distribution over functions
- Fully specified by
 - Mean function m (average function)
 - Covariance function k (assumptions on structure)

\[
\text{Cov}[f(x_p), f(x_q)] = k(x_p, x_q)
\]

- Posterior predictive distribution at x_* is Gaussian:

\[
p(f(x_*)| x_*, X, y) = \mathcal{N}(f(x_*) | m(x_*), \sigma^2(x_*))
\]

Test input Training data
Intuitive Introduction to Gaussian Processes

Prior belief about the function

Predictive (marginal) mean and variance:

\[E[f(x_*)|\emptyset] = m(x_*) = 0 \]
\[V[f(x_*)|\emptyset] = \sigma^2(x_*) = \text{Cov}[f(x_*), f(x_*)] = k(x_*, x_*) \]
Prior belief about the function

Predictive (marginal) mean and variance:

\[
E[f(x_*)|\emptyset] = m(x_*) = 0
\]

\[
V[f(x_*)|\emptyset] = \sigma^2(x_*) = \text{Cov}[f(x_*), f(x_*)] = k(x_*, x_*)
\]
Intuitive Introduction to Gaussian Processes

\[
\begin{align*}
\mathbb{E}[f(x_*)|X, y] &= m(x_*) = k(X, x_*)^\top k(X, X)^{-1} y \\
\mathbb{V}[f(x_*)|X, y] &= \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1} k(X, x_*)
\end{align*}
\]

Posterior belief about the function
Posterior belief about the function

Predictive (marginal) mean and variance:

\[
\begin{align*}
\mathbb{E}[f(x_*)|X, y] &= m(x_*) = k(X, x_*)^\top k(X, X)^{-1} y \\
\mathbb{V}[f(x_*)|X, y] &= \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1} k(X, x_*)
\end{align*}
\]
Intuitive Introduction to Gaussian Processes

Posterior belief about the function

Predictive (marginal) mean and variance:

\[
\mathbb{E}[f(x_*)|X, y] = m(x_*) = k(X, x_*)^\top k(X, X)^{-1}y
\]

\[
\mathbb{V}[f(x_*)|X, y] = \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1}k(X, x_*)
\]
Intuitive Introduction to Gaussian Processes

Posterior belief about the function

Predictive (marginal) mean and variance:

\[
\mathbb{E}[f(x_*)|X, y] = m(x_*) = k(X, x_*)^\top k(X, X)^{-1}y \\
\text{Var}[f(x_*)|X, y] = \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1}k(X, x_*)
\]
Intuitive Introduction to Gaussian Processes

Posterior belief about the function

Predictive (marginal) mean and variance:

\[
\begin{align*}
\mathbb{E}[f(x_*)|X,y] &= m(x_*) = k(X,x_*)^\top k(X,X)^{-1}y \\
\mathbb{V}[f(x_*)|X,y] &= \sigma^2(x_*) = k(x_*,x_*) - k(X,x_*)^\top k(X,X)^{-1}k(X,x_*)
\end{align*}
\]
Intuitive Introduction to Gaussian Processes

Posterior belief about the function

Predictive (marginal) mean and variance:

\[
\mathbb{E}[f(x_*) | X, y] = m(x_*) = k(X, x_*)^\top k(X, X)^{-1} y \\
\mathbb{V}[f(x_*) | X, y] = \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1} k(X, x_*)
\]
Posterior belief about the function

Predictive (marginal) mean and variance:

\[
\mathbb{E}[f(x_*)|X, y] = m(x_*) = k(X, x_*)^\top k(X, X)^{-1} y
\]

\[
\mathbb{V}[f(x_*)|X, y] = \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1} k(X, x_*)
\]
Intuitive Introduction to Gaussian Processes

Posterior belief about the function

Predictive (marginal) mean and variance:

\[E[f(x_*)|X, y] = m(x_*) = k(X, x_*)^\top k(X, X)^{-1} y \]

\[\text{Var}[f(x_*)|X, y] = \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1} k(X, x_*) \]
Intuitive Introduction to Gaussian Processes

Posterior belief about the function

Predictive (marginal) mean and variance:

\[
\mathbb{E}[f(x_*)|X, y] = m(x_*) = k(X, x_*)^\top k(X, X)^{-1}y
\]

\[
\mathbb{V}[f(x_*)|X, y] = \sigma^2(x_*) = k(x_*, x_*) - k(X, x_*)^\top k(X, X)^{-1}k(X, x_*)
\]
Model-based Policy Search

Objective

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t) | \theta]$

High-Level Steps:

1. Probabilistic model for transition function f to be robust to model errors
2. Compute long-term predictions $p(x_1 | \theta), \ldots, p(x_T | \theta)$
3. Policy improvement
4. Apply controller

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Iteratively compute $p(x_1|\theta), \ldots, p(x_T|\theta)$
Long-Term Predictions

- Iteratively compute $p(x_1|\theta), \ldots, p(x_T|\theta)$

$p(x_{t+1}|x_t, u_t)$

$\mathcal{N}(\mu, \Sigma)$

GP prediction

Approximate inference

Moment matching (Quiñonero-Candela et al., 2003)
Long-Term Predictions

- Iteratively compute $p(x_1|\theta), \ldots, p(x_T|\theta)$

\[
p(x_{t+1}|\theta) = \int \int \int p(x_{t+1}|x_t, u_t) \, p(x_t, u_t|\theta) \, df \, dx_t \, du_t
\]

- GP prediction
- $\mathcal{N}(\mu, \Sigma)$
Long-Term Predictions

\[p(x_{t+1} \mid \theta) = \int \int \int p(x_{t+1} \mid x_t, u_t) \mathcal{N}(\mu, \Sigma) \, df \, dx_t \, du_t \]

- Iteratively compute \(p(x_1 \mid \theta), \ldots, p(x_T \mid \theta) \)
Long-Term Predictions

- Iteratively compute $p(x_1|\theta), \ldots, p(x_T|\theta)$

$$p(x_{t+1}|\theta) = \int \int \int p(x_{t+1}|x_t,u_t) p(x_t,u_t|\theta) \, df \, dx_t \, du_t$$

- Approximate inference

- Moment matching (Quiñonero-Candela et al., 2003)
Model-based Policy Search

Objective

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$

High-Level Steps:

1. Probabilistic model for transition function f to be robust to model errors
2. Compute long-term predictions $p(x_1|\theta), \ldots, p(x_T|\theta)$
3. **Policy improvement**
 - Compute expected long-term cost $J(\theta)$
 - Find parameters θ that minimize $J(\theta)$
4. Apply controller

Deisenroth & Rasmussen (ICML, 2011): *PILCO: A Model-based and Data-efficient Approach to Policy Search*
Policy Improvement

Objective

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$

- Know how to predict $p(x_1|\theta), \ldots, p(x_T|\theta)$

Deisenroth & Rasmussen (ICML, 2011): *PILCO: A Model-based and Data-efficient Approach to Policy Search*
Policy Improvement

Objective

Minimize expected long-term cost \(J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta] \)

- Know how to predict \(p(x_1|\theta), \ldots, p(x_T|\theta) \)
- Compute

\[
\mathbb{E}[c(x_t)|\theta] = \int c(x_t)N(x_t | \mu_t, \Sigma_t)dx_t, \quad t = 1, \ldots, T,
\]

and sum them up to obtain \(J(\theta) \)

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Policy Improvement

Objective

Minimize expected long-term cost \(J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta] \)

- Know how to predict \(p(x_1|\theta), \ldots, p(x_T|\theta) \)
- Compute

\[
\mathbb{E}[c(x_t)|\theta] = \int c(x_t) \mathcal{N}(x_t | \mu_t, \Sigma_t) \, dx_t, \quad t = 1, \ldots, T,
\]

and sum them up to obtain \(J(\theta) \)
- Analytically compute gradient \(dJ(\theta)/d\theta \)
- Standard gradient-based optimizer (e.g., BFGS) to find \(\theta^* \)

Deisenroth & Rasmussen (ICML, 2011): *PILCO: A Model-based and Data-efficient Approach to Policy Search*
Policy Improvement

Objective

Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$.

- Know how to predict $p(x_1|\theta), \ldots, p(x_T|\theta)$
- Compute

$$\mathbb{E}[c(x_t)|\theta] = \int c(x_t) \mathcal{N}(x_t | \mu_t, \Sigma_t) \, dx_t, \quad t = 1, \ldots, T,$$

and sum them up to obtain $J(\theta)$

- Analytically compute gradient $dJ(\theta)/d\theta$
- Standard gradient-based optimizer (e.g., BFGS) to find θ^*

PILCO framework for controller learning

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Swing up and balance a freely swinging pendulum on a cart

Cost function \(c(x) = -\exp(-\|x - x_{\text{target}}\|^2) \)

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
Standard Benchmark Problem: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart
- Cost function $c(x) = -\exp\left(-\|x - x_{\text{target}}\|^2\right)$

Deisenroth & Rasmussen (ICML, 2011): *PILCO: A Model-based and Data-efficient Approach to Policy Search*
Standard Benchmark Problem: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart
- Cost function $c(x) = -\exp(-\|x - x_{\text{target}}\|^2)$
- **Unprecedented learning speed** compared to state-of-the-art

Deisenroth & Rasmussen (ICML, 2011): **PILCO: A Model-based and Data-efficient Approach to Policy Search**
Learning to Control an Off-the-Shelf Robot

- Autonomously learn block-stacking with a low-cost robot
- Robot very noisy
- Learn forward model and controller from scratch

Deisenroth et al. (RSS, 2011): *Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning*
Controlling Throttle Valves in Combustion Engines

Bischoff et al., ECML 2013

More videos at http://www.youtube.com/user/PilcoLearner
Summary (1)

Practical Framework for Autonomous Learning

- Key: Explicit incorporation of model uncertainty into long-term predictions and decision making
- Applied to real systems
Outline

Controller Learning

- Reinforcement Learning
- Bayesian Optimization
Bayesian Optimization for Learning Controllers

- Learning forward models is not always easy
- Legged locomotion: ground contacts

Objective

Find parameters θ of controller $\pi(\theta)$
Bayesian Optimization for Learning Controllers

- Learning forward models is not always easy
- Legged locomotion: ground contacts

Objective

Find parameters θ of controller $\pi(\theta)$

Challenges:

- No forward model
- No analytic cost function, no demonstrations
- Still need to be data efficient (fragile robot)
- Manual parameter search is tedious

Bayesian optimization (e.g., Jones 1998; Osborne et al., 2009)
Bayesian Optimization

Objective
Minimize an objective function g, which is very expensive to evaluate
Bayesian Optimization

Objective

Minimize an objective function \(g \), which is very expensive to evaluate

Key Idea:

1. Build a model \(\tilde{g} \) of the objective function
2. Find \(\theta^* = \arg\min_\theta \tilde{g}(\theta) \)
3. Evaluate true objective \(g \) at \(\theta^* \)
4. Update the model \(\tilde{g} \)
Bayesian Optimization

Objective
Minimize an objective function g, which is very expensive to evaluate

Key Idea:
1. Build a model \tilde{g} of the objective function
2. Find $\theta^* \in \text{arg min}_\theta \tilde{g}(\theta)$
3. Evaluate true objective g at θ^*
4. Update the model \tilde{g}
 - Standard model \tilde{g} is a Gaussian process
 - Standard assumption:
 Computations are cheap compared to evaluating true objective g
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB)** criterion to select next point

\[\theta^* = \arg \min_\theta \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right) \]
- **Upper-Confidence-Bound (UCB) criterion to select next point**

\[
\theta^* = \arg\min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound** (UCB) criterion to select next point

\[\theta^* = \arg \min_{\theta} \left(E[\tilde{g}(\theta)] - 2\sqrt{V[\tilde{g}(\theta)]} \right) \]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion** to select next point

\[
\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right)
\]
- **Upper-Confidence-Bound (UCB)** criterion to select next point

\[
\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{V}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion to select next point**

\[
\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

- Upper-Confidence-Bound (UCB) criterion to select next point

\[\theta^* = \arg \min_\theta \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{Var}[\tilde{g}(\theta)]} \right) \]
• **Upper-Confidence-Bound** (UCB) criterion to select next point

\[\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right) \]
Bayesian Machine Learning for Controlling Autonomous Systems

Marc Deisenroth @University of Oxford, September 30, 2013

21

Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion to select next point**

\[
\theta^* = \arg\min_\theta \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion to select next point**

\[\theta^* = \arg \min_\theta \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{V}[\tilde{g}(\theta)]} \right) \]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB)** criterion to select next point

\[\theta^* = \arg\min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{Var}[\tilde{g}(\theta)]} \right) \]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion to select next point**

 \[
 \theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{Var}[\tilde{g}(\theta)]} \right)
 \]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion to select next point**

\[
\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{V}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion** to select next point

\[
\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right)
\]
- **Upper-Confidence-Bound (UCB) criterion to select next point**

\[
\theta^* = \arg \min_{\theta} \left(E[\tilde{g}(\theta)] - 2\sqrt{V[\tilde{g}(\theta)]} \right)
\]
• **Upper-Confidence-Bound** (UCB) criterion to select next point

\[
\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{Var}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

Upper-Confidence-Bound (UCB) criterion to select next point

\[\theta^* = \arg\min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right) \]
Bayesian Optimization: Illustration

- Upper-Confidence-Bound (UCB) criterion to select next point

\[\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right) \]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion** to select next point

\[
\theta^* = \arg \min_\theta \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\mathbb{V}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

- Upper-Confidence-Bound (UCB) criterion to select next point

\[\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{V}[\tilde{g}(\theta)]} \right) \]
Bayesian Optimization: Illustration

- **Upper-Confidence-Bound (UCB) criterion to select next point**

\[
\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{Var}[\tilde{g}(\theta)]} \right)
\]
Bayesian Optimization: Illustration

- Upper-Confidence-Bound (UCB) criterion to select next point

\[\theta^* = \arg \min_{\theta} \left(\mathbb{E}[\tilde{g}(\theta)] - 2\sqrt{\text{Var}[\tilde{g}(\theta)]} \right) \]

- Global minimum found after 10 function evaluations
Bayesian Gait Optimization for Legged Locomotion

- Fragile biped
 - Only few experiments feasible
- Maximize robustness and walking speed
- 4 motors:
 - 2 actuated hips + 2 actuated knees
- Controller implemented as a finite-state-machine (8 parameters)
- Good parameters found after 100 experiments
Summary (2)

Bayesian Gait Optimization

- Bayesian optimization for learning controllers in a few experiments
- General framework
 (no assumptions on dynamics, no explicit cost required)
- Limited to few parameters ($\approx 10–20$)
Wrap-up

- Controller learning for autonomous systems (from scratch)
 - Reinforcement learning
 - Bayesian optimization
- Key to success: Probabilistic modeling and Bayesian inference

m.deisenroth@imperial.ac.uk

Thank you for your attention
References

