A Unified Framework for Game Theoretic & Probabilistic Learning

I. Rezek
With help from A. Rogers, R. Dash, S. Reece, S. Roberts

Project Aim

Outline

- Fictitious Play
- Bayesian Data Fusion
- Variational Learning
- Variational Nash Solution
- Variational Fictitious Play
- Parallelisms
- Examples
- Future

Fictitious Play

- 2 Players, Actions S^1, S^2, Payoffs U^1, U^2
- Each player keeps update of empirical frequencies of actions = mixed strategy of opponent σ^1, σ^2
- Choose best response to opponent
- E.g. MaxMin Response

 $s^1 = \max \left[\sigma^2(1) \cdot U^1(1) + \sigma^2(2) \cdot U^1(2) \right]$

Fictitious Play

- Graphical Model of Fictitious Play

Bayesian Data Fusion

- Consistent fusion of observations with prior model beliefs
- Hi-dimensional integration required

 $P(D) = \int P(D | \theta) P(\theta) d\theta$
- Numerical Integration, or
- Bounding Integrals: Variational Learning
Variational Learning

- Convert to Convex Optimisation problem:
 \[\max P(D) \equiv \max (\log P(D)) \]
- Cost function: KL-Divergence
 \[\log P(D) \geq -\int Q(\theta) \log P(\theta \mid D) d\theta + H(\theta) \]

Variational Nash Solution

- Mean-Field independence assumption: specific choice that
 \[Q(\theta) = \prod Q(\theta_i) \]
- KL Divergence minimisation by partial differentiation
 \[\frac{\partial KL}{\partial Q(\theta)} \rightarrow \max Q(\theta) \quad \text{s.t.} \quad Q(\theta_i) = \text{const} \]
 - Nash equilibrium as minimum of function

Variational Fictitious Play

- General solution (model free): iterate
 \[Q(\theta) = \exp \left[\int Q(\theta_i) \log P(\theta \mid D) \right] d\theta \]
- Best Response in continuous fictitious play
 \[Q(\theta) = \text{BR}\{Q(\theta_i)\} + Q(\theta_i) \]

Machine Learning Games - Parallels

- Cost function in games lacks entropy term
 - No trade-off between max reward and cost of play
- Best response function in games linear, in machine learning exponential
- Pay-off function is machine learning set by nature (and scientist’s model guess)

Machine Learning Games – Parallels (contd.)

- Log-probability (a.k.a. information):
 - machine learning equivalent to “currency”
- Players in machine learning “Believers” in latent parameters
 - Players’ mixed strategy is posterior parameter distributions
- Structured variational solution:
 - machine learning equivalent to “coalition”

Example: Paper-Rock-Scissors

- Modified payoff matrix gives biased solution:
 \[M = \begin{bmatrix} -2 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix} \]
- Mixed Strategy solution with Linear Programming:
 - Row=[.6 0 .4]; Column=[.0 .6 .4];
Example: Paper-Rock-Scissors

- Variational Fictitious play
- Best Response adjusted for extra entropy term
- Iterate mixed strategy – i.e. no actions drawn from mixed strategy

Example: Market Allocation

- K-service providers, N-customers
- Game with continuous action spaces
- Payoff function:
 - VCG auction utility equivalent to Variational cost function when strategies are pure (Entropy = 0)
- Model complexity = optimal # of Agents

Future

- What might it buy us
 - Mean field = independent agents; Belief Propagation = coalitions
 - Fictitious play when variational solution not analytic
 - Probabilistic inference methods derived not from physics but based on human learning in games
Acknowledgements

This Research was undertaken as part of the ARGUS II DARP (Defence and Aerospace Research Partnership). This is a collaborative project involving BAe Systems, QinetiQ, Rolls-Royce, Oxford University and Southampton University and is funded by the industrial partners together with EPSRC, MoD and DTI.