1. Bag of visual words model: recognizing object categories
Problem: Image Classification

Given:

• positive training images containing an object class, and

• negative training images that don’t

Classify:

• a test image as to whether it contains the object class or not
Weakly-supervised learning

- Learn model from a set of training images containing object instances
- Know if image contains object or not
- But no segmentation of object or manual selection of features
Three stages:

1. Represent each training image by a vector
 - Use a bag of visual words representation

2. Train a classifier to discriminate vectors corresponding to positive and negative training images
 - Use a Support Vector Machine (SVM) classifier

3. Apply the trained classifier to the test image
Representation: Bag of visual words

Visual words are ‘iconic’ image patches or fragments

• represent the frequency of word occurrence
• but not their position
Example: Learn visual words by clustering

- Interest point features: textured neighborhoods are selected
- produces 100-1000 regions per image

Weber, Welling & Perona 2000
Learning visual words by clustering ctd

"Pattern Space" (100+ dimensions)
Example of visual words learnt by clustering faces

100-1000 images

~100 visual words
Image representation – normalized histogram

- detect interest point features
- find closest visual word to region around detected points
- record number of occurrences, but not position
Example Image collection: four object classes + background

Faces 435
Motorbikes 800
Airplanes 800
Cars (rear) 1155
Background 900
Total: 4090

The “Caltech 5”
Represent an image as a histogram of visual words

- Detect affine covariant regions
- Represent each region by a SIFT descriptor
- Build visual vocabulary by k-means clustering (K~1,000)
- Assign each region to the nearest cluster centre

Bag of words model
Visual vocabulary for affine covariant patches

Detect patches

[Mikolajczyk and Schmid ’02]
[Matas et al. ’02]

Vector quantize descriptors from a set of training images using k-means

Normalize patch

Compute SIFT descriptor

[Lowe’99]
Descriptors – SIFT [Lowe’99]

distribution of the gradient over an image patch

4x4 location grid and 8 orientations (128 dimensions)

very good performance in image matching [Mikolaczyk and Schmid’03]
Vector quantize the descriptor space (SIFT)

The same visual word
Each image: assign all detections to their visual words

- gives bag of visual word representation
- normalized histogram of word frequencies
- also called ‘bag of key points’
Visual words from affine covariant patches

Vector quantize SIFT descriptors to a vocabulary of iconic “visual words”.

Design of descriptors makes these words invariant to:

• illumination
• affine transformations (viewpoint)

Size (granularity) of vocabulary is an important parameter

• fine grained – represent model instances
• coarse grained – represent object categories
Examples of visual words
More visual words
Visual synonyms and polysemy

Visual Polysemy: Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms: Two different visual words representing a similar part of an object (wheel of a motorbike).
Training data: vectors are histograms, one from each training image

Train classifier, e.g., SVM
The Binary Classification Problem
A Separating Hyperplane
Maximal Margin Hyperplane
SVM Terminology

$$w^T x + b = -1$$
$$w^T x + b = 0$$
$$w^T x + b = +1$$

Margin = $2 / \sqrt{w^T w}$
SVM classifier with kernels

\[f(x) = \sum_{i}^{N} \alpha_i k(x_i, x) + b \]

- \(N \) = size of training data
- \(f(x) \geq 0 \) positive class
- \(f(x) < 0 \) negative class

Note: \(\alpha_i \) and \(k(x_i, x) \) are support vectors and their weights, respectively.
Linear separability

- linearly separable
- linear kernel sufficient
- not linearly separable
- use non-linear kernel
Some popular kernels

- Linear: $K(x, y) = x^T y$
- Polynomial: $K(x, y) = (x^T y + c)^n$
- Radial basis function: $K(x, y) = e^{-\gamma ||x-y||^2}$
- Chi-squared: $K(x, y) = e^{-\gamma \chi^2(x,y)}$

where $\chi^2(x,y) = \sum_j \frac{(x_j-y_j)^2}{x_j+y_j}$
Advantage of linear kernels – at test time

\[f(x) = \sum_{i}^{N} \alpha_i k(x_i, x) + b \]

\[f(x) = \sum_{i}^{N} \alpha_i x_i \mathbf{x}^\top + b \]

\[= \mathbf{w}^\top \mathbf{x} + b \]

\(N = \) size of training data

Independent of size of training data
Current Paradigm for learning an object category model

Manually gathered training images

Test images

Manually gathered training images

Visual words

Learn a visual category model

Evaluate classifier / detector

...
Example: weak supervision

Training
- 50% images
- No identification of object within image

Testing
- 50% images
- Simple object present/absent test

Learning
- SVM classifier
- Gaussian kernel using χ^2 as distance between histograms

Result
- Between 98.3 – 100% correct, depending on class

Zhang et al 2005 Csurka et al 2004
Localization according to visual word probability

sparse segmentation

- foreground word more probable
- background word more probable
Why does SVM learning work?

- Learns foreground and background visual words

\[w \]

\{ foreground words – positive weight \}

\{ background words – negative weight \}
Bag of visual words summary

• **Advantages:**
 - largely unaffected by position and orientation of object in image
 - fixed length vector irrespective of number of detections
 - Very successful in classifying images according to the objects they contain
 - Still requires further testing for large changes in scale and viewpoint

• **Disadvantages:**
 - No explicit use of configuration of visual word positions
 - Poor at localizing objects within an image