Outline

1. Bag of visual words model for categorization
 • SVM classifier

2. Adding spatial information for localization

3. Databases and challenges

4. Spatial layout

5. Class based segmentation
 • Pixel level localization

6. Conclusions and the future
Beyond a bag of visual words
Outline

- Region of Interest (ROI)
 - jumping/sliding window for localization
- Spatial tiling
- Histogram of Gradients (HOG)
- Spatial pyramid
- Case study
Region of Interest (ROI)

- Problem of background clutter
- Use a sub-window
 - At correct position, no clutter is present
Sliding window detection

- Scale / orientation range to search over
- Speed
- Context
search over scale

Largest Scale

Smallest Scale
Problems with sliding windows ...

- aspect ratio
- granularity (finite grid)
- partial occlusion
- multiple responses

See recent work by

- Christoph Lampert et al CVPR 08, ECCV 08
- Bosch et al BMVC 08
Sliding window

- Classifier: SVM with linear kernel
- bag of visual word representation of ROI
- Stronger training: ROI on object instance

Example detections for dog

Lampert et al CVPR 08
More spatial information - tiling

Use spatial grid to define correspondence

- parameter: number of tiles

If codebook has V visual words, then representation has dimension 4V

Fergus et al ICCV 05
Ex: Leibe & Schiele 03/04 : Generalized Hough Transform

- **Learning**: for every cluster, store possible “occurrences”

- **Recognition**: for new image, let the matched patches vote for possible object positions
Ex: Leibe & Schiele 03/04: Generalized Hough Transform

Interest Points ➔ Matched Codebook Entries ➔ Probabilistic Voting ➔ Backprojection of Maximum

Voting Space (continuous)
More features – histogram of orientations

- tiling
- each tile represents HOG
- dense descriptor

Counts in orientation bins can be thought of as visual words
Ex 1: Human (Pedestrian) Detection

Histograms of Oriented Gradients for Human Detection
Dalal & Triggs, CVPR 2005

Detect & localize upright people in static images

Challenges
- Wide variety of articulated poses
- Variable appearance/clothing
- Complex backgrounds
- Unconstrained illumination
- Occlusions, different scales

Applications
- Pedestrian detection for smart cars
- Film & media analysis
- Visual surveillance
• training: ROI over pedestrian
• classification: linear SVM on HOG
• NB similarity to SIFT, GIST
Dalal and Triggs, CVPR 2005
Learned model

\[f(x) = w^\top x + b \]
What do negative weights mean?

\[w_x > 0 \]
\[(w_+ - w_-)x > 0 \]
\[w_+ > w_-x \]

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg
(avoid firing on doorways by penalizing vertical edges)
Ex 2: Upper body detector – using HOGs

average training data

• Ferrari et al CVPR 08
More features – dense visual words

DENSE PATCHES

- **Textons**
 - Parameters: N – size of patch
 - M – distance between patches
 - Row reorder gray values and form a vector of size N^2

- **SIFT**
 - Parameters: r – radi of patch
 - M – distance between patches
 - 128- SIFT descriptor

References:

- Vogel & Schiele 2004,
- Jurie & Triggs ICCV 05,
- Fei-Fei & Perona CVPR 05,
- Bosch et al ECCV 06,
- Luong & Malik 1999,
- Varma & Zisserman 2003
More Spatial information – Pyramid kernels

Lazebnik et al. [CVPR 2006]

• Divide image into grids of varying resolution, and give more weight to agreement in finer grids.
 – 2^l grids at level l
• Intersect histograms, multiply by weight.
More Spatial information – Pyramid kernels

Spatial Pyramid Kernels for Geometry/Appearance Matching
(Lazebnik et al CVPR’06)

Based on Grauman & Darrell ICCV 05
9 matches x 1

= 9
9 matches x 1

4 matches x ½

= 9

= 2
9 matches x 1

4 matches x \(\frac{1}{2} \)

= 9

= 2
9 matches x 1

4 matches x ½

2 matches x ¼

Total matching weight (value of spatial pyramid kernel): $9 + 2 + 0.5 = 11.5$
Pyramid spatial layout for appearance patches – for images

Represent appearance as dense grid of visual words

\[\kappa^L(X, Y) = \frac{1}{2^L} \mathcal{I}^0 + \sum_{\ell=1}^{L} \frac{1}{2^L - \ell + 1} \mathcal{I}^\ell \]
Generalizations

- Use chi-squared kernel instead of histogram intersection

\[K_f(i, j) = \sum_{l \in L} \beta_f^l e^{-\mu \chi^2(h_f^l(i), h_f^l(j))} \]
Pyramid HOG – for images

Represent local orientated gradients
Pyramid HOG for image regions
Pyramid HOG for image regions
Case study: scene classification

Coast	Forest	Mountain	Open country	River	Sky/clouds
Vogel & Schiele - VS

Coast	Forest	Mountain	Open country	Highway	Inside city	Tall building	Street
Oliva & Torralba - OT

Suburb	Bedroom	Kitchen	Living room	Office	Store	Industrial
Fei Fei & Perona - FP

Lazebnik et al. - LSP
Vogel & Schiele DATASET

702 images
6 categories

Coast
Forest
Mountain

Open country
River
Sky/clouds

VS dataset
Oliva & Torralba DATASET

2688 images
8 categories

OT dataset

Coast Forest Mountain Open country

Highway Inside city Tall building Street
Fei-Fei & Perona DATASET

Coast	Forest	Mountain	Open country	Highway	Inside city	Tall building	Street
![Coast](image1) | ![Forest](image2) | ![Mountain](image3) | ![Open country](image4) | ![Highway](image5) | ![Inside city](image6) | ![Tall building](image7) | ![Street](image8)

Suburb	Bedroom	Kitchen	Living room	Office
![Suburb](image9) | ![Bedroom](image10) | ![Kitchen](image11) | ![Living room](image12) | ![Office](image13)

3759 images
13 categories

FP dataset
Lazebnik, Schmid & Ponce DATASET

- Coast
- Forest
- Mountain
- Open country
- Highway
- Inside city
- Tall building
- Street
- Suburb
- Bedroom
- Kitchen
- Living room
- Office
- Store
- Industrial

4385 images
15 categories

LSP dataset
Multit-way Classification

- For each class ‘c’ learn a 1-vs-rest SVM classifier
- Classification of test image I according to:

$$c^* = \arg \max_c D_c(I)$$

- where $D_c(I)$ is the distance for the SVM for class c
Features

- bag of visual words
- HOG
- spatial pyramid of visual words
- spatial pyramid HOG

Parameters

- vocabulary size V
- level weightings
- feature combination weights
Methodology for learning parameter values

- optimize classification performance on a validation set
- 1 vs rest SVM classifier
Optimize vocabulary size V on validation set

2688 images
8 categories

OT dataset
Spatial pyramid with learnt weights

• Learn level weights – linear combination of kernels

\[K_f(i, j) = \sum_{l \in L} \beta^l f e^{-\mu \chi^2(h^l_f(i), h^l_f(j))} \]

• if weights common to all classes:

 without optimization: \(\beta_0 = 0.25, \beta_1 = 0.25, \beta_2 = 0.5 \)

 with optimization: \(\beta_0 : \beta_2 = 1.0, \beta_1 : \beta_2 = 0.8 \)
Optimized values for each dataset
Same number of Images as authors

SVM one against all – \mathbf{X}^2 kernel for visual words
Up to $L = 2$ for spatial pyramid

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of categ.</th>
<th># train</th>
<th># test</th>
<th>SP</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT</td>
<td>8</td>
<td>800</td>
<td>1888</td>
<td>87.1</td>
<td>83.7 Oliva & Torralba</td>
</tr>
<tr>
<td>OT</td>
<td>4 Natural</td>
<td>1000</td>
<td>472</td>
<td>93.3</td>
<td>89.0 Oliva & Torralba</td>
</tr>
<tr>
<td>OT</td>
<td>4 Man-Made</td>
<td>1000</td>
<td>216</td>
<td>94.2</td>
<td>89.0 Oliva & Torralba</td>
</tr>
<tr>
<td>VS</td>
<td>6</td>
<td>600</td>
<td>100</td>
<td>88.6</td>
<td>74.1 Vogel & Schiele</td>
</tr>
<tr>
<td>FP</td>
<td>13</td>
<td>1300</td>
<td>2459</td>
<td>85.5</td>
<td>65.2 Fei-Fei & Perona</td>
</tr>
<tr>
<td>LSP</td>
<td>15</td>
<td>1500</td>
<td>2986</td>
<td>83.5</td>
<td>81.4 Lazebnik et al.</td>
</tr>
</tbody>
</table>

Coast
Forest
Mountain
Op. Country
Highway
Inside City
Street
Tall building
Spatial pyramid with feature combination

- feature weights – linear combination of kernels

\[K_{\text{opt}}(i, j) = \sum_{f \in F} d_f K_f(i, j) \]

- dense visual words
- HOG

Lazebnik et al.
dense visual words
dense visual words optimized
dense visual words & HOG optimized

<table>
<thead>
<tr>
<th></th>
<th>Lazebnik et al. dense visual words</th>
<th>dense visual words optimized</th>
<th>dense visual words & HOG optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.1</td>
<td>83.5</td>
<td>90.2</td>
<td></td>
</tr>
</tbody>
</table>
Take home messages

- Lite use of spatial information
 - tiling, spatial pyramid

- Combination of features
 - visual words, sparse, dense, HOG

- Learn parameters on validation set
More classifiers …

- **SVM Classifier**
 - good performance
 - convex optimization

- **Logistic regression**

- **Adaboost**
 - e.g. used by Viola & Jones face detector
 - slow to learn, fast to test

- **Random forests**
 - fast to learn, fast to test
 - Jamie Shotton tutorial