Lie Groups and Algebras for optimisation and motion representation

AVL/MRG Reading Group

Tuesday 6th May 2008

- Chapter 2, An invitation to 3D vision, Ma & al
- Chapter 5, PhD Mei 2007
- Computing MAP trajectories by representing, propagating and combining PDFs over groups, Smith & al, ICCV 2003
Why use Lie Groups?

Some uses...

- Interpolation
- Motion representation
- General theory for the minimal representation of geometric objects
- Representation of PDFs over groups
Outline

1. Definitions
2. Representing motion and geometric objects
3. Interpolation
4. Minimisation
5. Uncertainty
Outline

1. Definitions
2. Representing motion and geometric objects
3. Interpolation
4. Minimisation
5. Uncertainty
Matrix Lie group (1/2)

Properties of a group \((G, \circ)\) :

- closed : \((g_1, g_2) \in G^2 \Rightarrow g_1 \circ g_2 \in G,
- associative :
 \[\forall (g_1, g_2, g_3) \in G^3, (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3), \]
- has a neutral (unit) element \(e\) :
 \[\forall g \in G^3, e \circ g = g \circ e = g, \]
- \(\circ\) is invertible :
 \[\forall g \in G, \exists g^{-1} \in G | g \circ g^{-1} = g^{-1} \circ g = e \]
Matrix Lie group (2/2)

Lie group \((G, \circ)\)

- \((G, \circ)\) is a group,
- \(G\) is a smooth manifold, i.e., has the topology of \(\mathbb{R}^n\), (the inverse function is differentiable everywhere)

All closed subgroups of the general linear group \(\text{GL}(n)\) (group of all invertible matrices) are Lie groups.
Definitions

- Representing motion and geometric objects
- Interpolation
- Minimisation
- Uncertainty

Matrix exponential (1/2)

<table>
<thead>
<tr>
<th>e^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>[e^A = I_n + \sum_{p \geq 1} \frac{A^p}{p!} = \sum_{p \geq 0} \frac{A^p}{p!} , \text{ beware: } e^X e^Y \neq e^{X+Y}]</td>
</tr>
</tbody>
</table>

This series is absolutely convergent and thus well-defined.

<table>
<thead>
<tr>
<th>log A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under the condition (| A - I | < 1), the logarithm of (A) is defined as :</td>
</tr>
<tr>
<td>[\log A = \sum_{p \geq 0} (-1)^{p+1} \frac{(A - I)^p}{p}]</td>
</tr>
</tbody>
</table>
Matrix exponential (2/2)

Calculating e^A in practice

- explicit formulas (e.g. Rodrigues’ formula for $SO(3)$). A general way of finding explicit formulas is to use the Cayley–Hamilton theorem.
- diagonalisation (not generally a good idea),
- *Nineteen dubious ways to compute the exponential of a matrix*, Moler and Loan, 1978 (or 2003)
- *The scaling and squaring method for the matrix exponential revisited*, N. Higham, 2005 (\texttt{expm} in Matlab)
Lie algebra

Lie algebra \mathfrak{g} of the Lie group G

The set of all matrices X such that e^{tX} is in G for all real numbers t.

\mathfrak{g} is an algebra (vector space + ring)

- Real vector space
 - $\forall t, tX \in G$
 - $X + Y \in G$

- $[X, Y] = XY - YX \in G$ (Lie bracket)
Definitions

Lie groups and algebras

Exponential map

If G is a matrix Lie group with Lie algebra \mathfrak{g}, then the exponential mapping for G is the map:

\[\exp : \mathfrak{g} \rightarrow G \]

In general the mapping is neither one-to-one nor onto but provides the *link* between the group and the Lie algebra.

There exists a neighborhood ν about zero in \mathfrak{g} and a neighborhood V of I in G such that $\exp : \nu \rightarrow V$ is smooth and one-to-one onto with smooth inverse.
Path-connectedness

G is **path-connected** if given any two matrices A and B in G, there exists a continuous path $A(t)$, $a \leq t \leq b$, lying in G with $A(a) = A$ and $A(b) = B$.

$\mathbb{SO}(n)$, $\mathbb{SL}(n)$ and $\mathbb{SE}(n)$ are connected ($\mathbb{O}(n)$ is not).
Generators

- Let $g(t_i) = \exp(t_i A_i)$ define a subgroup of G, then

 $A_i = \left. \frac{\partial g(t_i)}{\partial t_i} \right|_{t_i=0}$

 is a generator of \mathfrak{g}.

- The set of generators form a basis and any element $x \in \mathfrak{g}$
 can be written:

 $$A(x) = \sum_{i=1}^{n} x_i A_i$$
Special Orthogonal Group

\[
\det(e^A) = e^{\text{trace}(A)}
\]

\[
\mathbb{SO}(3) = \{ R \in \mathbb{GL}(3) | RR^\top = I, \det(R) = +1 \}
\]

- preserves orientation (not a reflexion)

Associated Lie algebra:

\[
\mathfrak{so}(3) = \{ [\omega]_\times \in \mathbb{R}^{3\times3} | \omega \in \mathbb{R}^3 \}
\]
Lie algebra representation and Euler angles

The Lie algebra representation:

\[(x_1, x_2, x_3) \mapsto \exp(x_1 [e_1] \times + x_2 [e_2] \times + x_3 [e_3] \times)\]

Euler angles:

\[(x_1, x_2, x_3) \mapsto \exp(x_1 [e_1] \times) \exp(x_2 [e_2] \times) \exp(x_3 [e_3] \times)\]
Special Euclidean Group

\[\mathbb{SE}(3) = \left\{ \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \in \text{GL}(4) \mid R \in \text{SO}(3), t \in \mathbb{R}^3 \right\} \]

- preserves distances
- preserves orientation (not a reflexion)

Associated Lie algebra twist:

\[\mathfrak{se}(3) = \left\{ \begin{bmatrix} \omega \times & v \\ 0 & 0 \end{bmatrix} \mid \omega, v \in \mathbb{R}^3 \right\} \]

- \(v \) is the linear velocity
- \(\omega \) is the angular velocity
Expressing velocity

Velocity of a point in homogeneous coordinates ($\mathbf{x}(t) \in \mathfrak{se}(3)$):

$$\dot{\mathbf{X}}(t) = \mathbf{x}(t)\mathbf{X}(t)$$

If $\mathbf{Y}(t) = \mathbf{T}\mathbf{X}(t)$ with $\mathbf{T} \in SE(3)$ (change of coordinates):

$$\dot{\mathbf{Y}}(t) = \mathbf{T}\mathbf{x}(t)\mathbf{T}^{-1}\mathbf{Y}(t)$$

Adjoint map on $\mathfrak{se}(3)$:

$$Ad_T : \mathfrak{se}(3) \longrightarrow \mathfrak{se}(3)$$

$$\mathbf{x} \longmapsto \mathbf{T}\mathbf{x}\mathbf{T}^{-1}$$

Adjoint representation of $\mathfrak{se}(3)$ ($e^{ad_x} = Ad_{ex}$):

$$ad_x : \mathfrak{se}(3) \longrightarrow \mathfrak{se}(3)$$

$$\mathbf{Y} \longmapsto [\mathbf{X}, \mathbf{Y}]$$
Another example: Special Linear Group

\[\text{SL}(3) = \{ \mathbf{H} \in \text{GL}(3) \mid \det(\mathbf{H}) = +1 \} \]

- ensures an invertible matrix with a minimal amount of parameters,
- subgroups include *affine transforms* or *translations* that are directly obtained by choosing the correct generators

This representation for a homography leads to “better” results than the “standard” minimal representation:

\[
\mathbf{H} = \begin{bmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & 1
\end{bmatrix}
\]
Outline

1. Definitions
2. Representing motion and geometric objects
3. Interpolation
4. Minimisation
5. Uncertainty
Interpolation

Let $T_1 = e^{x_1} \in SE(3)$ and $T_2 = e^{x_2} \in SE(3)$, a smooth trajectory can be obtained as $T(x) = e^{\lambda x_1 + (1-\lambda)x_2}$ with $\lambda = 0..1$.
Outline

1. Definitions
2. Representing motion and geometric objects
3. Interpolation
4. Minimisation
5. Uncertainty
A generic minimisation problem...

Let:

\[f : G \rightarrow \mathbb{R} \]

\[g \mapsto f(g) \]

We want to solve, with \(\bar{f} \in \mathbb{R} \):

\[\bar{g} = \min_g d(f(g), \bar{f}) \]

Gradient descent update:

\[\hat{g} \leftarrow \hat{g} + g_k \]

\(\hat{g} \) has no reason to still belong to \(G \)!!! (eg. rotation)
Using Lie algebras...

\[h : \mathbb{R}^n \rightarrow \mathfrak{g} \rightarrow \mathbb{R} \]
\[x \mapsto G(x) \mapsto f(\hat{g} \circ e^{G(x)}) \]

The parameterisation only needs to be valid locally.
New update:
\[\hat{g} \leftarrow \hat{g} \circ e^{G(x_k)} \]

\(\hat{g} \) is guaranteed to still belong to the group.
Important condition: the initial value and optimal value have to be path-connected (in the case of \(O \), there are two components...).
Example...

Pose estimation (Lu et al.):

$$\min_{x,t_x} \sum_{i=1}^{n} \| (I - Q_i) (R(x) R p_i + t + t_x) \|^2$$

Jacobians:

$$\nabla_x f_i = (I - Q_i) \left[\begin{bmatrix} e_1 \end{bmatrix} \times \begin{bmatrix} e_2 \end{bmatrix} \times \begin{bmatrix} e_3 \end{bmatrix} \right]_{3\times3\times3} R p_i$$

$$\nabla_{t_x} f_i = (I - Q_i)$$

$$R_{k+1} \leftarrow R(x) R_k$$

$$t_{k+1} \leftarrow t_k + t_x$$
Outline

1. Definitions
2. Representing motion and geometric objects
3. Interpolation
4. Minimisation
5. Uncertainty
Baker-Campbell-Hausdorff formula

Solution to $Z = \log(e^X e^Y)$:

$$Z = X + Y + \frac{1}{2} [X, Y] + \frac{1}{12} [X, [X, Y]] - \frac{1}{12} [Y, [X, Y]] + \ldots$$
Further reading

- **An Elementary Introduction to Groups and Representations**, Brian C. Hall.