Introduction

● “Sports Illustrated Jinx” - what goes up must come down
● Two kinds of Mean Reversion
 ○ Temporal
 ○ Cross-sectional
● Mean Reversion
 ○ Change in price in the next time step being proportional to the difference between the mean price and current price
● Stationarity
 ○ Prices diffuse slower than a geometric random walk

Let’s discuss:

● What are some of the theories / explanation behind price reversals in financial markets?
Augmented Dickey-Fuller (ADF)

- Test for Mean Reversion
- High level idea:
 - Basically relating the price change at timestep t with the price at previous timestep $t-1$
 - Start with the linear price change model (Eqn. (2.1)). Run a regression to obtain the coefficient λ below (but we denote as L from now on) and standard error SE
 $$\Delta y(t) = \lambda y(t - 1) + \mu + \beta t + \alpha_1 \Delta y(t - 1) + \cdots + \alpha_k \Delta y(t - k) + \epsilon_t$$
 - Test L/SE for statistical significance at some confidence threshold, say 95%
- Sanity check: Test statistic L/SE should be < 0 since $L < 0$ as mean reverting
Hurst Exponent

- Test for Stationarity (alternately, indicator for MR or Trendiness)
- High level idea:
 - Characterize the diffusion speed of log prices (z) over some arbitrary lag (tau) by:
 \[\text{Var}(\tau) = \langle |z(t + \tau) - z(t)|^2 \rangle \sim \tau^{2H} \]
 where H is the Hurst exponent, and tilde (\(~\)) means that the relationship becomes an equality with some proportional constant in the limit.
 - Compare this characterization against the geometric random walk ‘benchmark’:
 \[\langle |z(t + \tau) - z(t)|^2 \rangle \sim \tau \]
 - If H = 0.5, we obtain tau which means that log prices is geometric random walk
 - If H < 0.5, log prices are mean reverting; if H > 0.5, log prices are trending
Variance Ratio

- Not discussed in detail in the book
- Check for stationarity in the series
- Tests only random walk hypothesis (reject/do not reject) unlike Hurst (trend, random walk, mean reversion)

Interesting:

- Not commonly used across pipelines (e.g. Quantopian), unlike Hurst or ADF - Possibly a supporting actor and not a main lead?
Half Life of Mean Reversion I

- Recall the gradient \textbf{lambda} \((L)\) from ADF slide. This can be viewed as a gauge of the time needed for mean reversion.
- How do we go about it? Start with the linear model of price change:

\[
\Delta y(t) = \lambda y(t - 1) + \mu + \beta t + \alpha_1 \Delta y(t - 1) + \cdots + \alpha_k \Delta y(t - k) + \epsilon_t
\]

After some magical hand-waving, we arrive at the realm of stochastic calculus to get ...

\textbf{OU for MR process:} \(dy(t) = (\lambda y(t - 1) + \mu)dt + d\epsilon\)

… for which the expected price at \(t\) i.e. \(E(y(t))\), can then be solved analytically

\[
E(y(t)) = y_0 \exp(\lambda t) - \frac{\mu}{\lambda}(1 - \exp(\lambda t))
\]
Half Life of Mean Reversion II

\[E(y(t)) = y_0 \exp(\lambda t) - \frac{\mu}{\lambda} (1 - \exp(\lambda t)) \]

- Price decays exponentially to the highlighted term, with the half-life of decay being \(-\log(2)/L\)
- Recall that \(L < 0\) as per ADF.
- So what’s the point? It links the regression coeff. \(L\) to the half life of mean reversion i.e. useful for trading:
 - If \(L > 0\), not mean reverting
 - If \(L\) approx. 0, the half life is very long (price series not ‘choppy’ enough to be profitable)
 - \(L\) provides a natural time scale for many parameters when we put together strategies
 - Setting the lookback equal to (a small multiple of the) half life
Cointegration I

- Process of linearly combining non-stationary (price) series such that resulting portfolio has a stationary (price) series (e.g. Equity L/S)
- **Hedge Ratio** is the key ingredient for building these portfolios
- How do we go about getting the Hedge Ratio?
 - For 2 variables: Use Cointegrated Augmented Dickey-Fuller (CADF)
 - For > 2 variables: Use Johansen Test

Let’s discuss:

- **Apart from Equity L/S, what are some other interesting trades using cointegration?**
Cointegration II - Hedge Ratio

- Gives the ratio for which different variables should be combined in a portfolio
- High level idea (2 asset example using CADF):
 - Use 2 assets, say, A and B, with A as the independent variable
 - Run a regression - coefficient gives the Hedge Ratio i.e. how much to combine B with A. Let’s call this HR1
 - Reverse the roles of A and B in the regression and obtain HR2 (Important step: Only one of either HR1 or HR2 will give the stationary portfolio)
 - Use the CADF to decide on HR1 or HR2 based on some confidence threshold
- For Johansen Test - we use the eigenvector with the largest eigenvalue

Let’s discuss:

- What’s the difference between spurious regression and cointegration?
Pros and Cons of Mean Reversion

- **Pros:**
 - Vast array of choices to construct portfolios
 - Span a great variety of time scales (different types of traders, strategies)

- **Cons:**
 - Risk management difficult - hard to implement stop losses since mean itself is a moving target
Key Takeaways

● Definitions for MR, Stationarity, Cointegration
● Various tests for MR (ADF), Stationarity (H, VR) and Cointegration (CADF, J)
● Ideas underlying MR and cointegration is remarkably simple, but the devil is in the details
 ○ Ordering in the CADF tests, etc.

Let’s discuss:

● How can we enhance MR-based strategies?
● What are some alternatives to the methods used in the chapter?
● What has each of you gotten out of the chapter?
Thank you!
Useful Resources

https://www.quantopian.com/lectures/integration-cointegration-and-stationarity