Pulse Oximetry

- Oximetry is measuring how much oxygen the blood is carrying, the oxygen saturation of the blood.
- This is a very useful thing for clinicians to know, especially in patients with respiratory disorders:
 - Oxygen is the most acutely necessary substrate for aerobic life.

Pulse Oximetry

- Oximetry is measuring how much oxygen the blood is carrying, the oxygen saturation of the blood.
- This is a very useful thing for clinicians to know, especially in patients with respiratory disorders:
 - Oxygen is the most acutely necessary substrate for aerobic life.
 - Insufficiency of oxygen (hypoxia) leads to devastating neurological handicaps, if not death.

Pulse Oximetry

- Ideally, this information should be available on a continuous basis (rather than every few hours).
- Pulse Oximetry provides this information non-invasively.

Pulse Oximetry

- Ideally, this information should be available on a continuous basis (rather than every few hours).
- Pulse Oximetry provides this information non-invasively.

"The pulse oximeter is arguably the most significant technological advance ever made in monitoring the well-being and safety of patients during anaesthesia, recovery and critical care"

Severinghaus & Astrup (1986)
Measuring SaO₂

- Is it possible to measure arterial SaO₂ without taking a blood sample?
- It is the haemoglobin molecule which carries oxygen.
- It is the haemoglobin molecule which gives blood its distinctive colour.
- The two forms of the molecule (Hb and HbO₂) have different absorption spectra.

There is a window of opportunity here:
- The wavelength range between 600 and 1,000 nm is also the range for which there is the least attenuation of light by body tissues.
- By measuring the light transmission through a body segment at two wavelengths within that range, the arterial SaO₂ can be determined.

Oximetry is a non-invasive optical technique

Measuring SaO₂

- Is it possible to measure arterial SaO₂ without taking a blood sample?
- It is the haemoglobin molecule which gives blood its distinctive colour.
- It is the haemoglobin molecule which carries oxygen.

The wavelength range between 600 and 1,000 nm is also the range for which there is the least attenuation of light by body tissues.

Optical Sensors

- Optical sensors offer a number of advantages for biomedical applications:
- Inherent safety
Optical Sensors

- Optical sensors offer a number of advantages for biomedical applications:
 - Inherent safety
 - Immunity to electrical interference
 - No reference electrode required
 - Optical sensing techniques can be envisaged for most analytes

A simple model for oximetry

Assume that the transmission of light through the arterial bed depends only on the path length, the relative concentrations of Hb and HbO₂ and their absorption at the two wavelengths λ₁ and λ₂. Let:

- C_0 = concentration of oxyhaemoglobin (HbO₂)
- C_r = concentration of reduced haemoglobin (Hb)
- $\mu_{a,1}$ = absorption coefficient of HbO₂ at wavelength λ_1
- $\mu_{a,2}$ = absorption coefficient of Hb and wavelength λ_2
A brief history of oximetry

- Matthys, 1935
 - Transillumination of the earlobe at two wavelengths.
- Goldie, 1942
 - Compression of earlobe to obtain "bloodless" reference.

- Goldie, 1942
 - Compression of earlobe to obtain "bloodless" reference.

- Millikan, 1942
 - Local heating to arterilize capillary blood.

A brief history of oximetry

- Matthys, 1935
 - Transillumination of the earlobe at two wavelengths.
 - No differentiation between arterial, venous and capillary blood.
- Goldie, 1942
 - Compression of earlobe to obtain "bloodless" reference.

- Goldie, 1942
 - Compression of earlobe to obtain "bloodless" reference.

- Millikan, 1942
 - Local heating to arterilize capillary blood.
- Merrick and Hayes, 1976
 - Hewlett-Packard multi-wavelength oximeter.

Hewlett–Packard Ear Oximeter

- Basic Principles:
 - Multi-component model of ear pinna.
 - Each light absorber assumed to act independently of the others.
 - Measurement of light transmission at 8 wavelengths between 650 and 1050 nm.
 - Empirical calibration coefficients derived from study on 22 volunteers (750 data points).

- Disadvantages:
 - Complex instrumentation and signal processing.
 - Need for pre-calibration.

¹ The pinna, or auricle, is the outer projecting portion of the ear.
Hewlett-Packard Ear Oximeter

- Disadvantages:
 - Complex instrumentation and signal processing.
 - Need for pre-calibration.
 - Ear must be heated to 41°C for arterIALIZation of capillary blood.

Problems with oximetry

- The need to distinguish between absorption due to arterial blood (the wanted signal) and the absorption due to other components requires either:
 - An unacceptable procedure.
 - A complex model and an even more complex instrument.

 The solution?
 Pulse oximetry

Pulse Oximetry

- Discovered in Japan in the mid-1970's (Aoyagi, 1974)

- Only that part of the signal directly related to the inflow of arterial blood into the body segment is used for the calculation of SaO₂.

- If R is redefined as follows:

 $R = \frac{\log_{10} \frac{I_{p0}}{I_{p1}}}{\log_{10} \frac{I_{d0}}{I_{d1}}}$

 where I_{p0} and I_{p1} are the transmitted intensities without and with the pulse, respectively, and I_{d0} and I_{d1} are the transmitted intensities without and with the pulse, respectively.
Pulse Oximetry

- If R is redefined as follows:
 \[R = \frac{\log_{10} I_{a}}{\log_{10} I_{b}} \]
- Then the oximetry equation we derived earlier still holds:
 \[S_{AO_2} = \frac{\alpha_{o_2} - \alpha_{o_1}}{\alpha_{o_2} - \alpha_{o_1}} \]
 where α_{o_i} is the absorption coefficient of Hb at wavelength λ_i.

Calibration

- Empirical studies show that the actual relationship between R and oxygen saturation is as follows:

Any volunteers?