How to Use Decision Theory to Choose Among Mechanisms

James Bono (with David Wolpert)
Department of Economics
American University

From Game Theory to Game Engineering
Oxford Man Institute
September 17 & 18 2009
Point Predictions and Policy (mechanism) Choices *should* make use of decision theory.

- Need a probability distribution over states of the world (i.e. behavior of players).
- Set-valued solution concepts (NE, BNE, QRE, etc.) do not provide this.
- Predictive Game Theory (PGT) models do provide this.
PGT - the entire class of statistical game theoretic models (Wolpert and Bono).

Today: a Bayesian PGT model.

- Uses Quantal Response Equilibrium (QRE) (McKelvey and Palfrey) related concepts.
- Other models use: epsilon equilibrium (Radner), level-k (Costa-Gomes and Crawford), “intelligence” (Wolpert)
Bayesian PGT Model

- Behavioral Profiles: \(q \) (mixed strategy profiles i.e. product distributions \(q \in \times_i \Delta(X_i) \))
- Prior: \(P(q) \)
- Data: \(\mathcal{I} \)
- Likelihood: \(L(\mathcal{I}|q) \)
- Posterior:

\[
P(q|\mathcal{I}) \propto P(q)L(\mathcal{I}|q)
\]
Quantifies researcher’s beliefs about the relative likelihoods of behavioral profiles without regard to the data, \mathcal{J}. There are many ways to do this...

Entropic Prior

\[P(q) \propto \exp (\delta S(q)) \]

where \(S(q) = -\sum_i \sum_{x_i} q_i(x_i) \ln(q_i(x_i)) \) is the Shannon’s Entropy of \(q \) and \(\delta \) is a real-valued parameter.
Reports the likelihood of \mathcal{I} given the behavioral profile q. There are many ways to do this...

QR-rationality

$U_{q- i}^i$: the vector of expected payoffs to each of i’s pure strategies given $q_{- i}$.

Logit quantal response of i to $q_{- i}$ is:

$$L_{U_{q- i}^i, \beta_i}(x_i) \propto \exp[\beta_i E_q(u_i|x_i)]$$

Given a q, we find the parameter β_i that minimizes the Kullback-Leibler divergence of $L_{U_{q- i}^i, \beta_i}$ from q_i:

$$D(q_i||L_{U_{q- i}^i, \beta_i}) = \sum_{x_i} q_i(x_i) \ln \left(\frac{q_i(x_i)}{L_{U_{q- i}^i, \beta_i}(x_i)} \right)$$
Likelihood

QR-rationality

Minimizing $D(q_i||\mathcal{L}_{U_{q-i}})$ for each player yields $\beta^*(q)$, where $\beta^*_i(q)$ is a quantification of i’s rationality when faced with q_{-i}.

Here we’ll use:

$$\mathcal{L}(\mathcal{I}|q) \propto \prod_i [\tanh(\beta_i(q)) + 1]^{\alpha_i}$$

The greater the rationality, the greater the likelihood.
3 Different Cournot Games

5 Equilibria

Asymmetric

3 Equilibria
Elements of the point prediction problem:

1. a set of alternatives - the set of quantity profiles
2. a probability distribution over states of the world - the PGT posterior
3. an objective - a quantification of the modeler’s preferences (i.e. a loss function)
Predicting a single quantity profile with Decision Theory

Elements of the point prediction problem:

1. a set of alternatives - the set of quantity profiles
2. a probability distribution over states of the world - the PGT posterior
3. an objective - a quantification of the modeler’s preferences (i.e. a loss function)

Assume quadratic loss, \(L(x, x') = \|x' - x\|^2 \), then the optimal choice is

\[
x^* = \arg\min_{x'} \int_{q,x} q(x)\|x' - x\|^2 P(q|\mathcal{I})dxdq.
\]
Elements of the point prediction problem:

1. a set of alternatives - the set of quantity profiles
2. a probability distribution over states of the world - the PGT posterior
3. an objective - a quantification of the modeler’s preferences (i.e. a loss function)

Assume quadratic loss, \(L(x, x') = \|x' - x\|^2 \), then the optimal choice is

\[
x^* = \arg\min_{x'} \int_{q,x} q(x) \|x' - x\|^2 P(q | I) dx dq.
\]

| 5 equilibria | 8.97, 8.97 | undetermined | 7.4, 7.4 |
| Asymmetric | 9.4, 8.6 | 0.55, 16.8 | 6.3, 8.2 |
Elements of the point prediction problem:

1. a set of alternatives - the set of quantity profiles
2. a probability distribution over states of the world - the PGT posterior
3. an objective - a quantification of the modeler’s preferences (i.e. a loss function)

Assume quadratic loss, \(L(x, x') = ||x' - x||^2 \), then the optimal choice is

\[
x^* = \arg\min_{x'} \int_{q, x} q(x) ||x' - x||^2 P(q | \mathcal{I}) dx dq.
\]

<table>
<thead>
<tr>
<th>PGT (x^*)</th>
<th>NE (E(x))</th>
<th>QRE (E(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 equilibria</td>
<td>(8.97, 8.97)</td>
<td>undetermined</td>
</tr>
<tr>
<td>Asymmetric</td>
<td>(9.4, 8.6)</td>
<td>(0.55, 16.8)</td>
</tr>
</tbody>
</table>

note: if we want to predict \(q \)'s, then NE and QRE provide either a degenerate choice of one alternative or are unusable.
Problem: A policy-maker (PM) must choose low taxes, τ_L or high taxes, τ_H.

- PM’s objective under tax level m: $w_m(q)$
- Assume: unique NE q^{H*} and q^{L*}, players are fully rational, etc.,

⇒ PM simply compares $w_L(q^{L*})$ and $w_H(q^{H*})$.

What if there are multiple equilibria? Or we cannot strictly make the assumptions of the equilibrium concept (i.e. rationality)?

⇒ A PM cannot make a rational choice using equilibrium concepts?
Choosing Among Mechanisms with PGT and Decision Theory

For the duopoly, assume external costs $EC(x) = e_1 x$, then social welfare is:

$$w_m(q) = \mathbb{E}_q[\pi_A + \pi_B] + \mathbb{E}_q[x_A + x_B](\tau_m - e_1).$$

To choose a mechanism using a PGT model, PM selects the mechanism, m, that maximizes expected social welfare over the corresponding posterior.

$$\mathbb{E}[w_m(q)] = \int_q w_m(q)P_m(q|\mathcal{I})dq.$$
Comparing Mechanisms with Multiple Equilibria

Suppose $\tau_H = 4$, $\tau_L = 2$ and $e_1 = 1$.

For “3 Equilibria”:

PGT Results
- $E[w_0(q)] \approx -0.3$
- $E[w_L(q)] \approx 6.1$
- $E[w_H(q)] \approx 5.2$

Equilibrium Results
- QRE ($\beta = 0.5$) & NE:
 \[w_0(q^{0*}) < w_L(q^{L*}) < w_H(q^{H*}) \]
Questions real-world PM/stakeholders ask:

- “Which of the taxes produces greater variance in welfare?”
Questions real-world PM/stakeholders ask:

- “Which of the taxes produces greater variance in welfare?”
- “What is the probability that τ_H produces greater welfare than τ_L?”
Questions real-world PM/stakeholders ask:

- “Which of the taxes produces greater variance in welfare?”
- “What is the probability that τ_H produces greater welfare than τ_L?”
- “What is the probability that firm profits will be below/above some threshold value?”
Questions real-world PM/stakeholders ask:

- “Which of the taxes produces greater variance in welfare?”
- “What is the probability that τ_H produces greater welfare than τ_L?”
- “What is the probability that firm profits will be below/above some threshold value?”
- “Which of the taxes has a greater probability of producing welfare below some threshold value?”
Much More Information than $E[w_m(q)]$

Questions real-world PM/stakeholders ask:

- “Which of the taxes produces greater variance in welfare?”
- “What is the probability that τ_H produces greater welfare than τ_L?”
- “What is the probability that firm profits will be below/above some threshold value?”
- “Which of the taxes has a greater probability of producing welfare below some threshold value?”
Much More Information than $\mathbb{E}[w_m(q)]$

Questions real-world PM/stakeholders ask:

- “Which of the taxes produces greater variance in welfare?”
- “What is the probability that τ_H produces greater welfare than τ_L?”
- “What is the probability that firm profits will be below/above some threshold value?”
- “Which of the taxes has a greater probability of producing welfare below some threshold value?”

We have all the distributional information, so we can answer all of these.
$\alpha = .75$, QRE ($\beta = .5$)
More Informed PM/Stakeholders

- $\tau_H = 4$
 - strongly bi-modal distribution
 - highest variance in social welfare
 - highest probability of welfare greater than 15, lower than -5
- $\tau_L = 2$
 - nearly first-order stochastic dominates the zero tax distribution.
 - lowest probability of social welfare less than zero
 - highest probability of social welfare greater than 10
Example Constraint: Probability that firm profits are less than zero is greater than ϵ.
Main Point

Two types of risk:

1. idiosyncratic uncertainty about outcomes \(w_m(x) \) for a given \(q \)
2. systematic uncertainty about behavior \(q \)

Even if the PM is not averse to the risk that a given behavior \(q \) will produce bad outcomes \(w_m(x) \), he may still be averse to the risk that the policy will systematically elicit bad behavior.

Suppose PM’s objective function is:

\[
g(w_m(q)) = (w_m(q))^r = (E_q[\pi_A + \pi_B] + E_q[x_A + x_B](\tau_m - e_1))^r
\]

where \(r \in [0, 1] \)

Real World Justification: Major market changes are the result of costly legislative processes, and are often very difficult to retract once in place.
Posterior Moments (5 Equilibria $\delta = 1, \alpha = 4$)

$$E[q(x)] = \int_{\Delta x} q(x) P(q|\mathcal{I}) dq$$
Modeler Uncertainty about Utilities

Let $\mathcal{I} = \{\mathcal{I}' = 5 \text{ Equilibria}, \mathcal{I}'' = \text{Asymmetric}\}$. Modeler believes with probability k that \mathcal{I}' is true, and with probability $1 - k$ that \mathcal{I}''. Then $\mathcal{L}(\mathcal{I} | q) = k\mathcal{L}(\mathcal{I}' | q) + (1 - k)\mathcal{L}(\mathcal{I}'' | q)$.

![3D graph showing density function](image)
Summary

- Point Predictions and Mechanism Choices *should* utilize decision theory.
- Need models that produce distributions over behavioral profiles
- This leads to:
 1. rational choices by PM
 2. ability to incorporate constraints
 3. incorporating risk information
 4. making modeler uncertainty explicit
 5. dealing with multiple equilibria

- Future Work:
 1. more/better PGT models
 2. include experimental/demographic data
 4. Predictive models for bargaining, cooperative, etc.
Thank you!
Parameters

- Best response functions for $\bar{x}_i = 20; d_{i1} = 20.4; d_{i2} = 2.165; d_{i3} = 0.12; d_{i4} = 0.0025; c_{i1} = 16,000,000$ for $i = A, B$.

- Best response functions for the same parameters as in figure 8, except that $d_{A1} = 19.1$ instead of 20.4.

- Best response functions for $\bar{x}_i = 9; d_{i1} = 7.1; d_{i2} = 0.8; d_{i3} = 0.15; d_{i4} = 0.0125; c_{i1} = 401.7$ for $i = A, B$.