Joint Data Alignment Up To (Lossy) Transformations
Andrea Vedaldi Gregorio Guidi Stefano Soatto - UCLA Vision Lab

Joint alignment

Visual data is often affected by nuisance transformations (e.g. viewpoint, illumination, calibration of sensors, etc.). Removing the irrelevant variability makes analysis (e.g. recognition) much easier.

Goal: remove systematic nuisance transformations from a collection of data in order to simplify further analysis.

Image congealing

Image congealing (IC) [CONG] is a powerful method for joint alignment.

\[
g(x_1, \ldots, x_N) \sim \mathcal{H}(y_1, \ldots, y_N)
\]

- Find a transformed version of the data which is "as simple as possible".
- **Complexity:** (differential) entropy \(\mathcal{H}(y) \)
- **Formulation:**
 \[
 \min_{g_1, \ldots, g_N} \mathcal{H}(y_1, \ldots, y_N)
 \]

What if transformations \(g \) are lossy?

Example: Affine warps of digital images

Structural Complexity

Differential entropy \(\approx \# \) of prototypes to approximate data with \(\epsilon \) accuracy.

Differential entropy may not characterize well data alignment:

Example: Affine complexity

\[
\mathcal{C}(x, y) = \frac{1}{2} \log \det \left(I + \frac{\Sigma_y}{\epsilon^2} \right)
\]

Lossy Compression

Do we really need to regularize?

Idea 1: Obtaining simple data is not enough. We want a simple representation of the original data.

Complexity-distortion formulation

- **Invariant distortion**
 \[
 D(x, y) = E[\min_{y \in \mathcal{Y}} d_0(x, y)]
 \]
- **Complexity** \(\mathcal{C}(x, y) \)
- **Search for optimal trade-off**
 \[
 \min_{p(y|x)} D(x, y) + \lambda \mathcal{C}(x, y)
 \]

The formulation is reminiscent of rate-distortion, vector quantization, entropy constrained vector quantization. Advantages:

- Finds an actual representation
- Handles naturally lossy transformations
- Similarly to IC, scales better than [TCA]

Experiment 2: Natural Patches

Conclusions

- Complexity-distortion regularizes IC automatically.
- Complexity can encode and encourage meaningful properties of the data.
- Algorithms can align large dataset efficiently, even if the data structure is subtle.

References

Interpretation and Scaling

- Continuous data = differential entropy.
- Differential entropy is meaningful only up to a quantization error, which is relative to the scale of the data.
- If transformations include data scalings, minimizing differential entropy may become meaningless.

Idea 3: Differential entropy can be made meaningful by fixing the scale of the data.

\[
\mathcal{C}(x, y) = \frac{1}{2} \log \det \left(I + \frac{\Sigma_y}{\epsilon^2} \right)
\]

Algorithms

How do we align very large dataset?

\[
\frac{1}{K} \sum_{k=1}^{K} \| x_k - g_n y_k \|^2 + \frac{\lambda}{2} \log \det \left(I + \frac{Y Y^T}{\epsilon^2} \right)
\]

Observation: It is easy to compute the approximate variation of the energy when a single point is moved.

Three algorithms (all optimize one point per time):

1. **Coordinate descent.**
2. **Gradient descent.**
3. **Efficient gradient descent** by approximating the reconstruction error.

\[
D(x, y) \approx \frac{1}{K} \sum_{k=1}^{K} \frac{\beta_k}{\det A_k} - \frac{1}{\gamma} \sum_{i=1}^{16} \log(-e_i^T (M_\omega + b))
\]

Images and their boundaries. Often neglected, boundaries are an important problem. Solved by padding or by natural extension for image patch.

Experiment 1: NIST digits

NIST digits (hand-written digits)

Joint Data Alignment Up To (Lossy) Transformations

Joint alignment

Visual data is often affected by nuisance transformations (e.g. viewpoint, illumination, calibration of sensors, etc.). Removing the irrelevant variability makes analysis (e.g. recognition) much easier.