Arrays
- In MATLAB and C
- Pointer arithmetic

Sorting
- The sorting problem
- Insertion sort
- Algorithmic complexity

Divide & conquer
- Solving problems recursively
- Merge sort
- Bisection root finding

Linked list
- Search, insertion, deletion

Trees
- Binary search trees

Graphs
- Minimum spanning tree

Lecture 4 outline

Arrays
- In MATLAB and C
- Pointer arithmetic

Sorting
- The sorting problem
- Insertion sort
- Algorithmic complexity

Divide & conquer
- Solving problems recursively
- Merge sort
- Bisection root finding

Linked list
- Search, insertion, deletion

Trees
- Binary search trees

Graphs
- Minimum spanning tree

Arrays
An array is a data structure containing a numbered (indexed) collection of items of a single data type.

In MATLAB arrays are primitive types.
In C, arrays are compound types. Furthermore, C arrays are much more limited than MATLAB's.

/* Define, initialise, and access an array of three integers in C */
int a[3] = {10, 20, 30};
int sum = a[0] + a[1] + a[2];

/* Arrays of custom data types are supported too */
VTOLState states[100];
for (t = 1; t < 100; t++) {
 states[t].position = states[t-1].position + states[t-1].velocity + 0.5*g;
 states[t].velocity = states[t-1].velocity + g - getThrust(states[t-1], burnRate) / states[t-1].mass;
 states[t].mass = states[t-1].mass - burnRate * escapeVelocity ;
}
Array representation in C

In C an array is represented as a sequence of records at consecutive memory addresses.

/* array of five doubles */
double A[5];

/* get a pointer to the third element */
double *pt = &A[2];

Two (and more) dimensional arrays are simply arrays of arrays.

/* A 2x5 array */
double A[2][5];

Static vs dynamic arrays in C

This C statement defines an array a of five integers

```
int A[5];
```

The size is static because it is specified before the program is compiled. What if the size needs to be adjusted at run-time?

The solution is to allocate dynamically the required memory:

```
int arraySize = 5;
int *A = malloc(sizeof(int) * arraySize);
```

Note that a is declared as a pointer to an int, not as an array. However, the array access operator [] can still be used. E.g. a[1] = 2

`Pointer math: a[n]` is the same as `(*(a + n))`

E.g. `a[0]` is the same as dereferencing the pointer (*)

Under the hood, the address stored by a is incremented by `n * sizeof(int)` to account for the size of the pointed elements

Lecture 4 outline

- Arrays
 - In MATLAB and C
 - Pointer arithmetic
- Sorting
 - The sorting problem
 - Insertion sort
 - Algorithmic complexity
- Divide & conquer
 - Solving problems recursively
 - Merge sort
 - Bisection root finding
- Linked list
 - Search, insertion, deletion
- Trees
 - Binary search trees
- Graphs
 - Minimum spanning tree
- Problem: sort an array of numbers in non-decreasing order.

There are many algorithms to do this: bubble sort, merge sort, quick sort, ...

We will consider three aspects:

- Describing the algorithm formally.
- Proving its correctness.
- Evaluating its efficiency.

We start from the insertion sort algorithm

- Input: an array of numbers.
- Output: the numbers sorted in non-decreasing order.
- Algorithm: initially the sorted output array is empty. At each step, remove an element from the input array and insert it into the output array at the right place.

See http://www.sorting-algorithms.com/ for illustrations
The insertion procedure that extends a sorted array by inserting a new element into it:

% Input: array A of size ≥ n such that A[1] <= ... <= A[n-1]
function A = insert(A, n)
 i = n
 % the invariant is true here
 while i > 1 and A[i-1] > A[i]
 swap(A[i-1], A[i])
 i = i - 1
 % the invariant is true here
 end
end

A loop invariant is a property that is valid before each loop execution starts. It is usually proved by induction. For insert() the loop invariant is:

- A[i] ≤ A[i+1]

Insertion sort

% Input: an array A with n elements
function A = insertionSort(A, n)
 i = 1
 % the invariant is true here (A)
 while i < n
 i = i + 1
 A = insert(A, i)
 % the invariant is true here (B)
 end
end

Proof by induction

- base case (A) i = 1: A[1] is sorted
- inductive step (B) i ≥ 1: at iteration i the insert() procedure sorts A[1], ..., A[i] provided that A[1], ..., A[i-1] are sorted. The latter is given by the invariant at iteration i - 1.
Algorithmic complexity

- The **time complexity** of an algorithm is the maximum number of elementary operations \(f(n) \) required to process an input of size \(n \). Its **space complexity** is the maximum memory required.

- It often suffices to determine the **order of the complexity** \(g(n) \): linear \(n \), squared \(n^2 \), polynomial \(n^k \), logarithmic \(\log(n) \), exponential \(\exp(n) \), ... We say that the order of \(f(n) \) is \(g(n) \) and we write \(f(n) = O(g(n)) \) if:
 \[
 \exists a, n_0 : \forall n \geq n_0 : f(n) \leq ag(n)
 \]

Example: insertion sort
- The size of the input is the number \(n \) of elements to sort.
- The space complexity is \(O(n) \) as the algorithm stores only the elements and a constant number of local variables.
- The time complexity of \(\text{insert}() \) is \(O(m) \) as the while loop is executed at most \(m \) times. The time complexity of \(\text{insertionSort}() \) is \(O(n^2) \) because
 \[
 \sum_{m=1}^{n} m = \frac{(n + 1)n}{2} = O(n^2)
 \]

Divide and conquer
- **Divide and conquer** is a **recursive strategy** applicable to the solution of a wide variety of problems.
- The idea is to split each problem instance into two or more smaller parts, solve those, and recombine the results.

```
% Divide and conquer pseudocode
solution = solve(problem)
If problem is easy, compute solution
Else
  Subdivide problem into subproblem1, subproblem2, ...
  sol1 = solve(subproblem1), sol2 = solve(subproblem2), ...
  Get solution by combining sol1, sol2, ...
Note the recursive call. Divide and conquer is naturally implemented as a recursive procedure.

Some of the best known and most famous (and useful) algorithms are of this form, notably quicksort and the Fast Fourier Transform (FFT).
```

Lecture 4 outline

- **Arrays**
 - In MATLAB and C
 - Pointer arithmetic

- **Sorting**
 - The sorting problem
 - Insertion sort
 - Algorithmic complexity

- **Divide & conquer**
 - Solving problems recursively
 - Merge sort
 - Bisection root finding

Complexity of divide and conquer
- **Assume** that the cost of splitting and merging a subproblem of size \(m \) is \(O(m) \) (linear) and that the cost of solving a subproblem of size \(m = 1 \) is \(O(1) \).

<table>
<thead>
<tr>
<th></th>
<th>split & merge</th>
<th>solve</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 problem of size 8</td>
<td>1 x 8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2 problems of size 4</td>
<td>2 x 4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>3 problems of size 2</td>
<td>4 x 2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>8 problems of size 1</td>
<td>0</td>
<td>8 x 1</td>
<td>8</td>
</tr>
</tbody>
</table>

\[O(n \log_2 n) \]

- Given a problem of size \(n \), at each level \(O(n) \) work is done in order to split&merge or solve subproblems. Since there are \(\log_2(n) \) levels the total cost is
The merge sort algorithm sorts an array A by divide and conquer:

- **Split**: divide A into two halves A_1 and A_2.
- **Merge**: iteratively remove from the beginning of the sorted A_1 and A_2 the smallest element and append it to A.
- **Base case**: if A has one element only it is sorted.

Function

```
function A = mergeSort(A)
    n = length(A)
    if n == 1 then
        return A
    end
    k = floor(n / 2)
    A1 = A(1:k)
    A2 = A(k+1:end)
    A1 = mergeSort(A1)
    A2 = mergeSort(A2)
    return merge(A1, A2)
end
```

Function

```
function A = merge(A1, A2)
    i1 = 1, i2 = 1
    m1 = length(A1), m2 = length(A1)
    while i1 <= m1 and i2 <= m2
        if A1[i1] <= A2[i2]
            A[i1+i2-1] = A1[i1], i1 = i1 + 1
        else
            A[i1+i2-1] = A2[i2], i2 = i2 + 1
        end
    end
end
```

The two sorting algorithms have different complexities:

- insertion: $O(n^2)$
- merge: $O(n \log(n))$

Plotting time vs size in loglog coordinates should give a line of slope:

- 2 for insertion sort
- ~ 1 for merge sort

This is verified experimentally in the figure.

Problem: find a root of a non-linear scalar function $f(x)$, i.e. a value of x such that $f(x) = 0$.

Assumption: $f(x)$ is a continuous function defined in the interval $[a, b]$; furthermore, $f(a)f(b) < 0$.

The bisection algorithm is a divide and conquer strategy to solve this problem.

```
function bisect(f, a, b)
    m = (a + b) / 2
    if f(m) close to zero then return m
    if f(m) * f(a) > 0
        return bisect(f, m, b)
    else
        return bisect(f, a, m)
end
```

Insertion vs Merge Sort

- **Input size** vs **Time [s]**

Root finding

- **Problem**: find a root of a non-linear scalar function $f(x)$, i.e. a value of x such that $f(x) = 0$.
- **Assumption**: $f(x)$ is a continuous function defined in the interval $[a, b]$; furthermore, $f(a)f(b) < 0$.
- The bisection algorithm is a divide and conquer strategy to solve this problem.
A limitation of arrays is that inserting an element into an arbitrary position is $O(n)$. This is because existing elements must be shifted (moved in memory) in order to make space for the new one.

Linked lists solve this problem by using pointers:

In C a list data type could be defined as follows:

```c
typedef struct ListElement_ {
    struct ListElement_ *next ;
    double value ;
} ListElement ;

typedef ListElement List ;
```

The list could be defined as a pointer to its first element. It is customary to use instead a fake list element (which contains such a pointers) to simplify coding functions using the list.

Inserting an element into a linked list

To insert an element into a list, use pointers to create a “bypass” at cost $O(1)$.

```c
/* Create an empty list */
List list ;
list->next = NULL ;

/* Create an element */
ListElement *element = malloc(sizeof(ListElement));
element->next = NULL ;
element->value = 42.0 ;

/* Insert an element into a list */
void insert(ListElement *prev, ListElement *element) {
    element->next = prev->next ;
    prev->next = element ;
}

/* Insert at the beginning of the list */
insert(&list, element) ;

/* Insert after element */
insert(element, element2) ;
```

Removing an element from a linked list

To remove an element from a list, use pointers to create a “bypass” at cost $O(1)$.

```c
/* Remove an element */
ListElement *remove(ListElement *prev) {
    ListElement removed = prev->next ;
    if (removed != NULL) {
        prev->next = removed->next ;
    }
    return removed ;
}
```

Example usage

/* Remove the element after previous */
ListElement * removed = remove(previous) ;

/* Do not forget to release the memory if needed */
if (removed != NULL) {
 free(removed) ;
}
Lecture 4 outline

- **Arrays**
 - In MATLAB and C
 - Pointer arithmetic
- **Sorting**
 - The sorting problem
 - Insertion sort
 - Algorithmic complexity
- **Divide & conquer**
 - Solving problems recursively
 - Merge sort
 - Bisection root finding

Binary search tree

- **A binary search tree** is a binary tree such that the value of each node is
 - at least as larger as the value of its left descendants
 - smaller all the values of its right descendants
- Its main purpose is to support the binary search algorithm.

Binary search algorithm

- **Problem**: find a node with value \(x \) in a binary search tree.
- The **binary search algorithm** searches for \(x \) recursively, using the **binary search tree property** to descend only into one branch every time.

```c
function node = binarySearch(node, x)
    if node == NULL return NULL
    if node.value == x return node
    if x > node.value
        return binarySearch(node.right, x)
    else
        return binarySearch(node.left, x)
    end
end
```

- **Cost**: \(O(h) \) where \(h \) is the **depth** of the binary tree.
 - Typically \(h = O(\log n) \), where \(n \) is the number of nodes in the tree. Hence **the search cost is** \(O(\log n) \), **sub-linear**.
 - Compare this with the \(O(n) \) cost of searching in an array or a linked list.
Lecture 4 outline

- Arrays
 - In MATLAB and C
 - Pointer arithmetic
- Sorting
 - The sorting problem
 - Insertion sort
 - Algorithmic complexity
- Divide & conquer
 - Solving problems recursively
 - Merge sort
 - Bisection root finding
- Linked list
 - Search, insertion, deletion
- Trees
 - Binary search trees
- Graphs
 - Minimum spanning tree

Graphs

An (directed) graph is a set of vertices \(V \) and edges \(E \subset V \times V \) connecting the edges. An undirected graph is a graph such that for each edge \((u,v)\) there is an opposite edge \((v,u)\).

An alternative representation of a graph is the adjacency matrix \(A \). \(A \) is a \(n \times n \) matrix such that \(A(u,v) = 1 \) if, and only if, \((u,v) \in E\).

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Minimum spanning tree

Consider a weighed undirected graph with non-negative weights on the edges:

A spanning tree is a subset of the edges forming a tree including all the nodes.

A minimum spanning tree (MST) is a spanning tree such that the sum of the edge weights is minimal.

A famous algorithm to compute the MST is explored in the tutorial sheet.

Concept summary

- Software engineering processes
 - Specification, design & implementation, validation, evolution
 - Waterfall and extreme programming
- Software engineering tools
 - Abstraction and modularity
 - Procedures
 - Variables, data type, scoping
 - Dynamic memory allocation
 - Pointers, references
 - Recursion, stack, stack frames
 - Pointers to functions
 - Compound data types
- Data structures and algorithms
 - Complexity and correctness
 - Arrays, lists, trees, graphs
 - Sorting, searching, numerical problems
- Exam questions? See tutorial sheet to follow.