The Internet: 50 billion images and counting ...

It may not contain the picture you just took ...

.. but it likely contains a similar one!

For lecture notes, tutorial sheets, and updates see http://www.robots.ox.ac.uk/~vedaldi/teach.html
Goal: search a large collection for an image of the **same object**

Local image similarity by matching features

Global image similarity with geometric verification

Indexing and searching large image collections using visual words

Evaluating image retrieval systems

Define a similarity function between images

\[F(I_1, I_2) = \text{confidence that the object is the same} \]
Handling a variable viewpoint

As viewpoint changes pixels “move around” or even appear/disappear

We need to match corresponding pixels before we can compare them

Why do pixel values differ so much?

Nuisance factors

Matching can be seen as transforming or warping an image to another
Similarity transformations

If the camera rotates around and translates along the optical axis, the image transforms according to a similarity: scale, rotation, and translation.

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = sR(\theta) \begin{bmatrix}
 x \\
 y
\end{bmatrix} + \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
\]

\[
R(\theta) = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}
\]
Homography/affine transformations
For pure camera rotation or if the object is planar, then the image transforms with an homography (approximated as an affine transformation).

\[
\begin{bmatrix}
x'
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]

Comparing local features using normalisation
Suppose corresponding features \(f \) and \(f' \) are given to us. Then normalisation undoes the effect of a viewpoint change. After normalisation, pixels are in correspondence (matched) and can be compared.

Descriptors
In practice, one compares descriptors rather than pixels. Descriptors:
- handle residual distortions, noise, illumination;
- make the representation more compact.

Example: SIFT descriptors
Given two image features
Normalise them and extract descriptors
Compare descriptors as vectors

Question: how do we get the features in the first place?

Proposal: exhaustive matching

For the list of all possible transformations of a feature (unit circle)
- similarity + unit circle \rightarrow all possible circles
- affine + unit circle \rightarrow all possible ellipses

If the “same feature” is visible in both images, it must be somewhere in such lists

Thus, try to match everything with everything

Why exhaustive matching is unfeasible

The cost of exhaustive matching is $O(N_1 N_2)$ where N_i is the number of features extracted from image I_i.

N_i is a very large number:
- there is one feature for each transformation
- in principle, $N_i = \infty$
- even with a sufficiently fine discretisation, N_i is in the order of millions

Co-variant feature detectors

A detector is a rule that selects a small subset of features for matching.

The key is co-variance: the selection mechanism must pick the “same” (corresponding) features after an image transformation.

Example of a co-variant detection rule: “pick all the dark blobs”.
Co-variant detection, invariant descriptor

A feature extracted by the Harris-Affine detector independently from different frames of a video.

Note that the feature seems "glued on" the scene.

Co-variant detector types

Properties of a detector
- repeatability
- generality
- speed

Benefits of affine covariance
- handle more general motions / objects

Cons of affine covariance
- less robust
- slower

Discriminability and support

In practice, descriptors are computed in a region surrounding the feature.

This is because the feature "visual anchors" (e.g. blobs) look the same and would be confused during matching.

Local image similarity by matching features

Global image similarity with geometric verification

Indexing and searching large image collections using visual words

Evaluating image retrieval systems
From local to global matching

Local matching
- So far we have detected and then matched **local features**.
- This is because normalisation is only possible for unoccluded, approximately planar structures.
- Small enough image fragments tend to satisfy such assumptions, but not the image as a whole.

Global matching
- However, our goal is to compare images as a whole, not just individual patches.
- Next, we will see how to build a **global similarity score** from patch-level local comparisons.

Matching all local features

Step 0: get an image pair

- The left image has m features $(f_1, d_1), \ldots, (f_m, d_m)$
- Right image has n feature $(f'_1, d'_1), \ldots, (f'_n, d'_n)$

Step 1: detect local features f and extract descriptors d

Step 2: match each descriptor to its closest one

The left image has m features

$$\text{Match the } i\text{-th left feature to its right nearest-neighbour } \text{nn}(i), \text{ where:}$$

$$\text{nn}(i) = \arg\min_{j=1,\ldots,m} \|d_i - d'_j\|^2$$
Matching all local features

Step 3: reject ambiguous matches using the 2nd-\(\text{nn}\) test

Accept a match \(i \mapsto \text{nn}(i)\) only if it is at least a fraction \(\tau = 0.9\) away from other possible matches:

\[
\|\mathbf{d}_i - \mathbf{d}_{\text{nn}(i)}\|^2 < \tau \arg \min_{j \neq \text{nn}(i)} \|\mathbf{d}_i - \mathbf{d}_j\|^2
\]

Step 4: geometric verification

The final step is to test whether matches are consistent with an overall image transformation. Inconsistent matches are rejected (see RANSAC).

Image similarity (II)

By counting number of **verified** local feature matches

\[
F(I_1, I_2) = \# \text{ of matches after geometric verification}
\]

RANSAC

For geometric verification

Input: \(M\) tentative feature matches \((x_1, x'_1), \ldots, (x_M, x'_M)\).

Output: optimal affine transformation \((A^*, T^*)\) with the largest number of inlier matches:

\[
(A^*, T^*) = \arg \max_{A,T} \{ |i : \|x'_i - Ax_i - T\| < \epsilon| \}
\]

1. Repeat a large number of times:
 A. Randomly sample a minimal subset of matches sufficient to estimate \((A,T)\).
 B. Compute how many other inlier matches are compatible with \((A,T)\).
2. Return the estimated \((A,T)\) that had the largest number of inliers.
Local image similarity by matching features

Global image similarity with geometric verification

Indexing and searching large image collections using visual words

Evaluating image retrieval systems

From image matching to image search

Our matching strategy can be used to search a handful of images exhaustively. However, this is far too slow to search a database of a billion or more images such as Flickr, FaceBook, or the Internet.

Example:
- \(L \) images in the database
- \(N \) features per image (incl. query)
- \(D \) dimensional feature descriptor
- Exhaustive search cost: \(O(N^2 LD) \)
- Memory footprint: \(O(NLD) \)

\[10^{11} \text{ to } 10^{15} \text{ ops = 100 days - 300 years} \]

Goal: develop a method to search a million or more images on a single computer in under a second (and many more on computer clusters).

Issues:
- memory footprint
- matching cost (time)
- precision and recall

From image matching to image search

I.e. how Google can search the Web so fast

The inverted index
I.e. how Google can search the Web so fast

Inverted index
- For each word, lists all documents containing it as pairs (DocID, WordCount)
- Efficient query resolution: given a word, return the corresponding list

Indexing images
- Image = document
- Word = ?

The key is to understand how to extract “words” from images

Visual words

For each visual descriptor, maps to a visual word

\[k = \pi(d) \]

E.g. 128D for SIFT

\[K \] elements
The K-means algorithm

For learning a visual words vocabulary

The visual vocabulary is obtained by forming K clusters of example descriptors \((d_1, \ldots, d_M) \). Here \(M \) may be in the order of a 1M, and \(K \) in the order of 10-100K.

The K cluster means \((\mu_1, \ldots, \mu_K) \) are randomly initialised. Then the K-means algorithm alternates two steps:

- Find for each descriptor \(d_i \) the index \(\pi(d_i) \) of its closest mean:
 \[
 \pi(d_i) = \arg\min_{k=1,\ldots,K} \|d_i - \mu_k\|^2
 \]

- Recompute each mean \(\mu_k \) from the descriptor assigned to it:
 \[
 \mu_k = \text{average}\{d_i : \text{nn}(d_i) = k\}
 \]

Once the means are trained, new descriptors \(d \) are quantised by mapping them to the closest mean:

\[
\pi(d) = \arg\min_{k=1,\ldots,K} \|d - \mu_k\|^2
\]

Visual word examples. Each row is an equivalence class of patches mapped to the same cluster by K-means.

From local features to visual words

Two steps:

- **Extraction.** Extract local features and compute corresponding descriptors as before.
- **Quantisation.** Then map the descriptors to the K-means cluster centres to obtain the corresponding visual words.
A simple but efficient global image descriptor

Histogram of visual words

The histogram of visual words is the vector of the number of occurrences of the K visual words in the image:

\[h_k = |\{d_i : \pi(d_i) = k\}| \]

If there are K visual words then \(h \in \mathbb{R}^K \).

The vector \(h \) is a global image descriptor.

This is also called a bag of visual words because it does not remember the relative positions of the features, just the number of occurrences.

Hence, \(h \) discards spatial information.

Pros: more invariant to viewpoint changes and other nuisance factors.

Cons: less discriminative.

Comparing histograms
Cosine similarity

Histogram of visual words can be compared as vectors.

The relative distribution of visual words is more informative than their absolute number of occurrences.

This intuition is captured by the cosine similarity, which computes the angle of the \(L^2 \)-normalised histograms.

By comparing bag-of-words descriptors

\[F(I_1, I_2) = \cos \theta = \left\langle \frac{h_1}{\|h_1\|}, \frac{h_2}{\|h_2\|} \right\rangle \]

Image similarity (III)
Search as sparse matrix multiplication

Goal: given a query vector \(h \), quickly compute its similarity with all the \(L \) vectors \(h_1, h_2, h_3, \ldots, h_L \) in the database (number of images).

Express this as a vector-matrix multiplication:

\[
\begin{pmatrix}
0 & 0.1 & 0.2 & 0 & \ldots & 0 & \ldots & 0.1 \\
\end{pmatrix}
\begin{pmatrix}
h_1 & h_2 & h_3 & \ldots & h_L \\
0 & 0 & 0 & \ldots & 0.1 \\
0 & 0.1 & 0 & \ldots & 0 \\
0.2 & 0 & 0 & \ldots & 0 \\
0.1 & 0 & 0.3 & \ldots & 0.1 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0.1 & \ldots & 0.2 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0.01 & 0.1 & 0 & \ldots & 0 \\
\end{pmatrix}
\]

The naive **multiplication cost** is \(O(KL) \), where \(K \) is the number of visual words and \(L \) is the database size.

However, histograms are often highly sparse. If only a fraction \(\rho \ll 1 \) of entries is non-zero, then the cost reduces to \(O(\rho KL) \) or even \(O(\rho^2 KL) \).

The **space required** is also only \(O(\rho KL) \).

Overview of fast image retrieval

Given a query image \(I \), we search the database by combining the two similarities:

1. **The fast but unreliable** cosine similarity to obtain a short list of \(M \approx 100 \) possible matches.

2. **The slow but reliable** geometric verification to rerank the top \(M \) matches.

Local image similarity by matching features

Global image similarity with geometric verification

Indexing and searching large image collections using visual words

Evaluating image retrieval systems
Evaluating of a retrieval system

We now have a system that can match a given picture to a large database of images (e.g. Wikipedia).

Besides speed, a good retrieval system must have two fundamental properties:

1. **Precision**, i.e. the ability of returning only images that match the query.
2. **Recall**, i.e. the ability of returning all the images that match the query.

Precision-recall curves

Assess the quality of a ranked result list

Consider all images up to rank r in the list:

- **Precision** @ r: fraction of correct results in the top r.
- **Recall** @ r: fraction of relevant database images that are contained in the top r.

The **Average-Precision** (AP) is (roughly) the area under the PR curve. AP is a single number summarising the overall quality of the result list.

Evaluating an image retrieval system

A benchmark usually has 1) a large image database and 2) a number of test queries for which the correct answer (relevant/irrelevant images) is known.

The retrieval system is evaluated in term of **mean average precision** (mAP), which is the mean AP of the test queries.

<table>
<thead>
<tr>
<th>query</th>
<th>retrieval results</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✔</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>✗</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>✔</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>✗</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>✔</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>✗</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>✔</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>✗</td>
<td>75%</td>
</tr>
</tbody>
</table>

mean average precision (mAP) 53%

Example benchmark: Oxford 5K

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

Dataset content

- ~5K images of Oxford
- An optional additional set of confounder (irrelevant) images
- 58 test queries