AIMS Computer Vision
Lecture 4.2: Co-variant detectors
HT 2018
Andrea Vedaldi

For slides and up-to-date information:
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Local features: contours

Local features: regions

Local features: interest points
Selecting points in a space co-variant manner

Goal: detect the same interest points, regardless of the translation

Suppose that an oracle shows you a template of the point
Detection amounts to searching points that match the template
In the second image, the same location are selected:
this detector is covariant to translations

Now suppose that the oracle provides two templates
▶ Which one would you pick?

Selecting points in a space co-variant manner

This patch matches at a set of discrete locations.
Suitable to detect a sparse set of interest points.

This patch matches entire rows of the image.
Cannot be used to define interest points.

The aperture problem

An image patch that does not contain sufficient structure (e.g. a uniform patch or an edge) does not allow fixing two components of the translation

Anisotropic structure: good interest point
Isotropic structure: bad interest point
Good patches to match

Pick a patch at a point \((tx, ty)\) and compare it to a patch slightly translated

The patch can be localized in \(x\) and \(y\) \(\iff E\) changes rapidly in \(x\) and \(y\)

\[
E(\delta tx, \delta ty) = \sum_{x,y \in W} [I(x + \delta tx, y + \delta ty) - I(x + tx, y + t + y)]^2
\]

Harris' cornerness function is defined as

\[
Harris(x, y) = \det M(x, y) - k(\text{tr } M(x, y))^2 = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2
\]

Intuition

- the first term is large if both \(I I\) are
- the second term further attenuates the case when only one eigenvalue is large

The structure tensor \(M(x,y)\) is the second order approximation of \(E(\delta tx, \delta ty)\)

\[
E(\delta tx, \delta ty) = \sum_{x,y \in W} [I(x + \delta tx, y + \delta ty) - I(x + tx, y + t + y)]^2
\]

\[
\approx [\delta tx, \delta ty] \left(\sum_{x-tx, y-ty \in W} \left[\frac{\partial I(x, y)}{\partial x} I(x, y) \right] \left[\frac{\partial I(x, y)}{\partial y} I(x, y) \right] \right) \left[\begin{array}{c} \delta tx \\ \delta ty \end{array} \right]
\]

\(E\) varies rapidly in \(x\) and \(y\) if \(M\) eigenvalues are both large; specifically

- two large eigenvalues \(\implies\) interest point
- one large eigenvalue \(\implies\) edge
- no large eigenvalue \(\implies\) uniform region

Harris cornerness (and similar measures) can be localised in space

- However, small translations of the same patch are also be localised (with a corresponding shift)

The solution is to run **non-maxima suppression**

- For each small neighbour of the image, pick the maximum response

Harris detector
Scale and space covariance: blobs

- [Courtesy Svetlana Lazebnik]

Edge detection

- [Courtesy S. Seitz]

Edge detection, take 2

- [Courtesy S. Seitz]

From two edges to a “top hat” (blob)

- [Courtesy S. Seitz]

Spatial selection: The magnitude of the Laplacian response will achieve a maximum at the centre of the blob, provided the scale of the Laplacian is “matched” to the scale of the blob.
Scale-invariant feature detection

Goal: independently detect corresponding regions in *scaled* versions of the same image

Needs a selection mechanism that is co-variant with image rescaling

Scale selection

Search **characteristic scale** of a blob by

- convolving it with Laplacians at several scales
- looking for the maximum response

However, Laplacian response *decays as scale increases*:

Why does this happen?

Scale normalization

The response of a *derivative of a Gaussian filter* to a *perfect step edge* decreases as $1/\sigma$

Compensating

- Gaussian derivative: \Rightarrow multiplying the filter by σ
- Laplacian (Gaussian second derivative) \Rightarrow multiply by σ^2
Effect of scale normalization after applying a Laplacian of increasing σ input signal with normalised Laplacian maximum

Laplacian of Gaussian: A circularly symmetric operator suitable for blob detection in 2D:

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Requires proper normalization similarly to 1D case

The 2D Laplacian is given by

$$\nabla^2_{\text{norm}} g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right) \propto (x^2 + y^2 - 2\sigma^2)e^{-\frac{x^2+y^2}{2\sigma^2}}$$

For a binary circle of radius r, the Laplacian achieves a maximum at $\sigma = r / \sqrt{2}$
Characteristic scale

Scale of an image that produces a peak of the Laplacian response:

\[\text{Characteristic scale} \]

Scale selection

The characteristic scale is **scale co-variant**

Relation between characteristic scales: \(s \times s_1 = s_2 \)

LoG detector (SIFT)

The normalized Laplacian of Gaussian response \(F(x,y,s) \) can be interpreted as a "blobbiness" measure

\[\text{LoG}(x, y, \sigma) = (I \ast \nabla_{\text{norm}} g_\sigma)(x, y, \sigma) \]

Similar to Harris, run **non-maxima suppression in this volume** to detect blob in scale and space

Harris-Laplace detector

Combine **scale-selection** with a **spatial detector** run at multiple resolution to obtain a detector which is **co-variant to translation and scale**

Harris points computed at multiple scales by resizing the image

Scale selected points at maximum of Laplacian
2D transformation models

Similarity
(translation, scale, rotation)

Affine
(anisotropic scaling, skew)

Projective
(homography, perspective)

Viewpoint covariant detection

Characteristic scales (size of region)
- Lindeberg and Garding ECCV 1994
- Lowe ICCV 1999
- Mikolajczyk and Schmid ICCV 2001

Affine covariance (shape of region)
- Baumberg CVPR 2000
- Matas et al BMVC 2002 ← maximally stable regions
- Mikolajczyk and Schmid ECCV 2002
- Schaffalitzky and Zisserman ECCV 2002
- Tuytelaars and Van Gool BMVC 2000
- Mikolajczyk et al., IJCV 2005

Example: Harris-affine

View 1

View 2 (a)

View 2 (b)

View 2 (c)

Not the same region!

Example of affine covariant regions

Maximally Stable Regions (MSR)
- Segment using watershed algorithm, and track connected components as threshold value varies
- An MSR is detected when the area of the component is stationary
- See Matas et al. BMVC 2002

(first image)
(second image)
Maximally stable regions

Example: Maximally stable regions

Maximally stable: The “best” threshold is the one for which the region changes the least.

Shape-adaptation

Similar to scale-selection, this method can be combined with most detectors

The idea is to look for a linear transformation that makes the patch look “isotropic”

▶ “isotropic” patch = the eigenvalues of the structure tensor M are equal

$$M = \sum_{x,y} \left[\frac{\partial_x I(x,y)}{\partial_y I(x,y)} \right] \left[\frac{\partial_y I(x,y)}{\partial_x I(x,y)} \right]$$

Residual rotation

▶ Both MSER and shape-adaptation are based on making an ellipse round

▶ This still leaves the rotation of the patch undetermined
Estimation of the dominant orientation
- extract gradient orientation
- histogram over gradient orientation
- peak in this histogram
- Rotate patch in dominant direction

Fixing the rotation

Example of affine covariant regions
1000+ regions per image
- Shape adapted regions
- Maximally stable regions

A region's size and shape are not fixed
They automatically adapt to the image intensity to cover the same physical surface
I.e. they correspond to the same physical surface region

Co-variant detection, invariant descriptor
- Extract elliptical viewpoint covariant regions
 - Shape Adapted regions
 - Maximally Stable regions

Normalization 1: map ellipse to circle
Normalization 2: orientate by dominant direction

Represent each region by SIFT descriptor (128-vector) [Lowe 1999]
- see Mikolajczyk and Schmid CVPR 2003 for a comparison of descriptors

Viewpoint invariant description

Harris-affine
Descriptors – SIFT [Lowe’99]

SIFT is a distribution of the gradient over an image patch
- 4x4 location grid and 8 orientations (128 dimensions)
- very good performance in image matching
 [Mikolaczyk and Schmid’03]

Image patch → Gradient → 3D histogram

Extract affine regions → Normalize regions → Eliminate rotation → Compute appearance descriptors → Match