Objective: Self evaluation methods for vision algorithms

Input

Human Pose Estimation (HPE) Algorithm

Output

HPE score: 8.1

Features

Correct outputs

- Sharp
- Thin
- Unimodal
- Multi-modal

Wrong outputs

- Broad
- Spread out

Step I: Decompose distribution into X, Y and θ.

Step II: Convolve with ideal distributions.

Step III: Find maximum and variance of convolution

Auxiliary Information

- \hat{X}_i (output pose estimate)
- X_i (ground truth)
- Similarity score between \hat{X}_i and X_i

Marginal distribution based

- # features = 6 parts * 3 components * 2 measures = 36

Bounding box based

- a) Area of extended bounding box outside the image.
- b) Area of intersection with other bounding boxes.
- c) Mean image intensity and gradient strength

Experiments

New datasets introduced with annotations

- Two new datasets: Buffy2 and movie stickmen

Performance of HPE Algorithms

- CPC (threshold 0.3) as similarity measure

Performance of Self Evaluators

- Percentage false negatives
- Percentage false positives

Example classifications (test set)

- Correctly Classified good pose estimates
- Correctly Classified bad pose estimates

References

Eichner and Ferrari 09

Yang and Ramanan 11

Correctly Classified good pose estimates

Correctly Classified bad pose estimates