Automatic and Efficient Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts

Tomas Pfister¹, James Charles², Mark Everingham², Andrew Zisserman¹

¹Visual Geometry Group
University of Oxford

²School of Computing
University of Leeds
Automatic sign language recognition:

- We want a large set of training examples to learn a sign classifier.
 - We obtain them from signed TV broadcasts.
- Exploit correspondences between signs and **subtitles** to automatically learn signs.
- Use the resulting sign-video pairs to train a sign language classifier.
Objective

Find the position of the head, arms and hands

- Use arms to disambiguate where hands are
Difficulties

- Colour of signer similar to background
- Overlapping hands
- Hand motion blur
- Faces and hands in background
- Changing background
Our approach:

- **First:** Automatic signer segmentation
- **Second:** Joint detection
Hand detection for sign language recognition

State-of-the-art: Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts [Buehler et al., BMVC'08]

Method: generative model of foreground & background using a layered pictorial structure model

Performance: accurate tracking of 1 hour long videos, but at a cost of 100s per frame
Hand detection for sign language recognition

State-of-the-art: Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts [Buehler et al., BMVC’08]

Method: generative model of foreground & background using a layered pictorial structure model

Our work – automatic and fast!

Necessary user input: 75 annotated frames per one hour of video (3 hours work)

- Colour & shape model
- HOG templates

Input

Find pose with minimum cost

No manual annotation

Runs in real-time

Performance: accurate tracking of 1 hour long videos, but at a cost of 100s per frame
Overview

Our approach:
- **First**: Automatic signer segmentation
- **Second**: Joint detection

Joint detection

Image	Intermediate step 1	Intermediate step 2	Hand and arm location
Input | Co-segmentation | Colour Model | Random Forest Regressor
The problem

- How do we segment the signer out of a TV broadcast?
One solution: depth data (e.g. Kinect)

- Using depth data, segmentation is easy

- But we only have 2D data from TV broadcasts…
How do we segment a signed TV broadcast?

Clearly there are many constancies in the video.

- Box contains changing background
- Same signer
- Signer never crosses this line
- Part of the background is always static
Co-segmentation

- Exploit constancies to help find a generative model that describes all layers in the video
Method: co-segmentation – consider all frames together

For a sample of frames obtain …

Background

Foreground
colour model

… and use the background and the foreground colour model to obtain

Per-frame segmentations
Find a “clean plate” of the static background
- Roughly segment a *sample of frames* using GrabCut
- Combine background regions with a median filter

Use this to refine the final foreground segmentation
Find a colour model for the foreground in a sample of frames
- Find faces in a sub-region of the video
- Extract a colour model from a region based on the face position

Use this as a global colour model for the final GrabCut segmentation
Qualitative co-segmentation results
Overview

Our approach:
- **First**: Automatic signer segmentation
- **Second**: Joint detection

Joint detection

Image

Intermediate step 1

Intermediate step 2

Hand and arm location

Input → Co-segmentation → Colour Model → Random Forest Regressor
Segmentations are not always useful for finding the exact location of the hands.

Skin regions give a strong clue about hand location.

Solution: find a colour model of the skin/torso.

Method:
- skin colour from a face detector
- torso colour from foreground segmentations (face colour removed)

Improves generalisation to unseen signers.
Overview

Our approach:
- **First**: Automatic signer segmentation
- **Second**: Joint detection

Joint detection

- **Image**
- **Intermediate step 1**: Co-segmentation
- **Intermediate step 2**: Colour Model
- **Hand and arm location**: Random Forest Regressor
Joint position estimation

- **Aim**: find joint positions of head, shoulders, elbows and wrists
- Train from Buehler et al.’s joint output
Random Forests

- **Method**: Random Forest multi-class classification
- **Input**: skin/torso colour posterior
- **Classify** each pixel into one of 8 categories describing the body joints
- **Efficient simple node tests**

\[f(a) = x_a \quad f(a, b) = |x_a - x_b| \]
\[f(a, b) = x_a - x_b \quad f(a, b) = x_a + x_b \]
Evaluation: comparison to Buehler et al.

- Joint estimations compared against joint tracking output by Buehler et al.
Evaluation: comparison to Buehler et al.

Random forest joint detection

Buehler et al. (2008)
Evaluation: quantitative results

Our method vs. Buehler et al. compared against manual ground truth

- Buehler et al. (2008)
- Our Method

e.g. 80% of wrist predictions are within 5 pixels of ground truth

Manual ground truth
Evaluation: problem cases

- Left and right hands are occasionally mixed

- Occasional failures due to a person standing behind the signer
Evaluation: generalisation to new signers

Trained & tested on **same** signer

Trained & tested on **different** signers

Generalises to new signers
Conclusion:

- Presented method which finds the position of hands and arms automatically and in real-time
- Method achieves reliable results for hours of tracking and generalises to new signers

Future work:

- Adding spatial model to avoid mixup of hands

Web page:

- This presentation is online at: http://www.robots.ox.ac.uk/~vgg/research/sign_language