Single Image Haze Removal Using Dark Channel Prior

Kaiming He The Chinese University of Hong Kong
Jian Sun Microsoft Research Asia
Xiaoou Tang The Chinese University of Hong Kong
Hazy Images

- Low visibility
- Faint colors
Goals of Haze Removal

• Scene restoration
• Depth estimation
Haze Imaging Model

\[I = J \cdot t + A \cdot (1 - t) \]

- **Hazy image**
- **Scene radiance**
- **Transmission**

Atmospheric light
Haze Imaging Model

\[I = J \cdot t + A \cdot (1 - t) \]

\[d = -\beta \ln t \]
Ambiguity in Haze Removal

scene radiance

input

depth
Previous Works

• Using additional information
 – Polarization filter [Shwartz et al., CVPR’06]
 – Multiple images [Narasimhan & Nayar, CVPR’00]
 – Known 3D model [Kopf et al., Siggraph Asia’08]
 – User-assistance [Narasimhan & Nayar, CPMCV’03]
Previous Works

• Single image

 – Maximize local contrast [Tan, CVPR 08]
Previous Works

• Single image
 – Maximize local contrast [Tan, CVPR 08]
Previous Works

• Single image
 – Maximize local contrast [Tan, CVPR 08]
 – Independent Component Analysis [Fattal, Siggraph 08]
Previous Works

• Single image
 – Maximize local contrast [Tan, CVPR 08]
 – Independent Component Analysis [Fattal, Siggraph 08]
Priors in Computer Vision

- Smoothness prior
- Sparseness prior
- Exemplar-based prior

Ill-posed problem → prior → well-posed problem

Dark Channel Prior
Dark Channel

- \(\text{min (rgb, local patch)} \)
Dark Channel

- $\min (\text{rgb, local patch})$
 - $\min (r, g, b)$
Dark Channel

- min (rgb, local patch)
 - min (r, g, b)
 - min (local patch) = min filter

15 x15

darkest
dark channel
Dark Channel

- \(\min (\text{rgb, local patch}) \)
 - \(\min (r, g, b) \)
 - \(\min (\text{local patch}) = \min \text{ filter} \)

\[
J_{\text{dark}}(x) = \min (\min J^c(y)) \\
\text{subject to } y \in \Omega(x), c \in \{r, g, b\}
\]

- \(J^c \): color channel of \(J \)
- \(J_{\text{dark}} \): dark channel of \(J \)
Dark Channel

- $\min (\text{rgb, local patch})$
 - $\min (r, g, b)$
 - $\min (\text{local patch}) = \min \text{ filter}$

$$J_{\text{dark}} = \min_{\Omega} \left(\min_{c} J^c \right)$$

- J^c: color channel of J
- J_{dark}: dark channel of J
A Surprising Observation

Haze-free
A Surprising Observation

86% pixels in [0, 16]

5,000 haze-free images
Dark Channel Prior

• For outdoor haze-free images

\[\min_{\Omega} \left(\min_{c} J^c \right) \to 0 \]
What makes it dark?

- Shadow
- Colorful object
- Black object
Dark Channel of Hazy Image

- The dark channel is no longer dark.
Transmission Estimation

Haze imaging model

\[I = J \cdot t + A \cdot (1 - t) \]

Normalize

\[\frac{I^c}{A^c} = \frac{J^c}{A^c} t + 1 - t \]

Compute dark channel

\[\min_{\Omega} \left(\min_c \frac{I^c}{A^c} \right) = \left\{ \min_{\Omega} \left(\min_c \frac{J^c}{A^c} \right) \right\} t + 1 - t \]
Transmission Estimation

Dark Channel Prior

\[\min_{\Omega} \left(\min_{c} J^c \right) \rightarrow 0 \]

Compute dark channel

\[\min_{\Omega} \left(\min_{c} \frac{I^c}{A^c} \right) = \left(\min_{\Omega} \left(\min_{c} \frac{J^c}{A^c} \right) \right)^{t + 1 - t} \rightarrow 0 \]
Transmission Estimation

Estimate transmission

\[t = 1 - \min_{\Omega} \left(\min_{c} \frac{I_c}{A_c} \right) \]

Compute dark channel

\[\min_{\Omega} \left(\min_{c} \frac{I_c}{A_c} \right) = \left\{ \min_{\Omega} \left(\min_{c} \frac{J_c}{A_c} \right) \right\} t + 1 - t \]
Transmission Estimation

Estimate transmission

\[t = 1 - \min_\Omega \left(\min_c \frac{I_c}{A_c} \right) \]
Transmission Optimization

Haze imaging model

\[I = J \cdot t + A \cdot (1 - t) \]

Matting model

\[I = F \cdot \alpha + B \cdot (1 - \alpha) \]

Refined transmission
Transmission Optimization

\[E(t) = \lambda \|t - \tilde{t}\|^2 + t^T L_t t \]

- **L** - matting Laplacian [Levin et al., CVPR '06]
- **Constraint** - soft, dense (matting - hard, sparse)
Transmission Optimization

before optimization
Transmission Optimization

after optimization
Atmospheric Light Estimation

\[A: \text{most hazy} \]

- brightest pixel
- hazy image
- dark channel

brightest pixels
Scene Radiance Restoration

\[I = J \cdot t + A \cdot (1 - t) \]

- **Hazy image**
- **Scene radiance**
- **Transmission**
Results

input
Results

recovered image
Results

depth
Results

input
Results

recovered image
Results

depth
Results

input
Results

recovered image
Results
Comparisons

input

[Fattal Siggraph 08]
Comparisons

input

our result
Comparisons

input

[Tan, CVPR 08]
Comparisons

input

our result
Comparisons

input [Kopf et al, Siggraph Asia 08] our result
Results: De-focus

recovered scene radiance

input

depth
Results: De-focus
Results: Video

output

input
Results: Video

output

input
Limitations

- Inherently white or grayish objects
Limitations

- Haze imaging model is invalid
 - e.g. non-constant A
Summary

• Dark channel prior
 – A natural phenomenon
 – Very simple but effective
 – Put a bad image to good use
Thank you