Some kernels for structured data

- Goal: construct a similarity score for objects such as
 - sequences
 - with variable length
 - by their interpretations
 - labeled graphs (or trees)
 - different size
 - different structure
 - other objects
 - by their interpretations

- The similarity must be a PD kernel
Rational kernels

- Compare sequences $x, y \in \Sigma^*$
 - $x = (0, 1, 1, 0, 1, 1, 0, 0)$
 - $y = (1, 1, 0, 1)$

- **Transducer**
 - maps a seq. x sto seq. z with a weight
 - defines a “weighed relation” $T(x, z) \rightarrow R$
 - is implemented by a *finite state automaton*

- Kernel
 - x, y are similar if they are transduced often to the same z
 - $K(x,y) = \sum_z T(x, z) \cdot T(y, z)$

- Advantage
 - Given an automaton for T, can construct an automaton for K
Rational kernels: Implementation

- Automaton for $K(x, y)$
 - invert T
 - compose T and T^{-1}
Rational kernels: Examples

- **Bag-of-subsequences**
 - \(x \) binary sequence
 - \(z \) binary sequence of 4 characters
 - \(T(x, z) = \# \) occurrences of \(z \) in \(x \)
 - \(K(x, y) = \sum_z T(x, z) T(y, z) \) is large iff \(x, y \) contain similar subsequences

- **Normalization**
 \[
 K(x, y) / (K(x, x) K(y, y))^{1/2}
 \]

- **Other examples**
 - HMM-like models

\[
\begin{align*}
x & = (0, 1, 1, 0, 1, 1, 0) \\
T & \quad \quad z \\
2 & \quad 0, 1, 1, 0 \\
1 & \quad 1, 1, 0, 1 \\
1 & \quad 1, 0, 1, 1 \\
y & = (1, 1, 0, 1) \\
T & \quad \quad z \\
1 & \quad 1, 1, 0, 1 \\
K(x, y) & = 1
\end{align*}
\]
Convolution kernels

- To compare objects x, y
 - decompose each object in d components
 - compare components and combine results
 - (repeat recursively until atomic components)

- Example: tree

x is a d-degree tree

Subpart relation

$$R(x_1, x_2, \ldots, x_d, x)$$

$$K(x, y) = \prod_{i=1}^{d} K_i(x_i, y_i)$$
Convolution kernels

- Example: string
 - \(\mathbf{x} \) is a string
 - Subpart relation
 \(R(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}) \) iif
 \(\mathbf{x}_1, \mathbf{x}_2 \) are (non-empty) strings such that \(\mathbf{x} = \text{concat}(\mathbf{x}_1, \mathbf{x}_2) \)

- Multiple decompositions are possible
 - \(R^{-1}(\mathbf{x}) = \{ (\mathbf{x}_1, \mathbf{x}_2) : R(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}) \} \)

- Convolution kernel

\[
k(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{x}' \in R^{-1}(\mathbf{x})} \sum_{\mathbf{y}' \in R^{-1}(\mathbf{y})} \prod_{i=1}^{r} k_i(\mathbf{x}'_i, \mathbf{y}'_i)
\]
We can represent the relation ”x_1, \ldots, x_d are the parts of x” by a relation R on the set $X_1 \times \cdots \times X_D \times X$, where $R(x_1, \ldots, x_D, x)$ is true iff x_1, \ldots, x_D are the parts of x. For brevity, let $\vec{x} = x_1, \ldots, x_D$, and denote $R(x_1, \ldots, x_D, x)$ by $R(\vec{x}, x)$. Let $R^{-1}(x) = \{\vec{x} : R(\vec{x}, x)\}$. We say R is finite if $R^{-1}(x)$ is finite for all $x \in X$. Here are some examples:

1. If x is a D-tuple in $X = X_1 \times \cdots \times X_D$, and each component of $x \in X$ is a part of x, then $R(\vec{x}, x)$ iff $\vec{x} = x$.

2. If $X_1 = X_2 = X$, where X is the set of all finite strings over a finite alphabet \mathcal{A}, then we can define $R(x_1, x_2, x)$ iff $x_1 \circ x_2 = x$, where $x_1 \circ x_2$ denotes the concatenation of strings x_1 and x_2.

3. Continuing the previous example, if the alphabet \mathcal{A} has only one letter, then a finite string can be represented by the nonnegative integer n that is its length, so $X_1 = X_2 = X = \{0, 1, \ldots\}$ and $R(n_1, n_2, n)$ iff $n_1 + n_2 = n$.

4. If $X_1 = \ldots = X_D = X$, where X is the set of all D-degree ordered and rooted trees, then we can define $R(\vec{x}, x)$ iff x_1, \ldots, x_D are the D subtrees of the root of the tree $x \in X$.
Kernels based on local info

- **Given**
 - \{ x_1, ..., x_n \} collection of objects
 - “local” distances
 formally: \(G \) undirected weighed DAG

- **Get geodesic distances** \(D \)
 - all shortest-paths \(D \)
 - regularize by finding low-dimensional embedding
 (ISOMAP)

- **Get a kernel**
 - Use identity
 \(D(x_1,x_2) = K(x_1,x_1) + K(x_2,x_2) - 2K(x_1,x_2) \)
 - Make *positive definite* by incrementing the diagonal
 \(K \leftarrow K + \lambda I \)

See references in
Graph kernels

- Compare *labeled graphs* \(x, y \in \Sigma^* \)
 - given a kernel on *paths* \(k_{\text{path}}(h, h') \)
 - extend to kernel on graphs
 - try to capture “topology”

- Compare all paths \(W(G_1), W(G_2) \)

\[
k_G(G_1, G_2) = \sum_{h \in W(G_1)} \sum_{h' \in W(G_2)} k_{\text{path}}(h, h')
\]

- walks (any path)
- proper paths (no self intersection)
- shortest paths
- random walks

Fisher kernels

• Compare objects x, y by a **generative model**
 - given $p(x \mid \theta)$
 - map points x to maximum-likelihood parameters θ_x
 - compare $K(\theta_x, \theta_y)$

• Local analysis
 - log-likelihood function $L(x, \theta) = \log p(x \mid \theta)$
 - assume $x \sim p(x \mid \theta)$
 - maximum likelihood is consistent $\forall \hat{\theta}: E[L(x, \hat{\theta})] \leq E[L(x, \theta)]$

• Fisher score

 $$U(x, \theta) = \nabla_\theta L(x, \theta) \quad E[U(x, \theta)] = \frac{\partial}{\partial \theta} E[L(x, \theta)] = 0$$

• Fisher information

 $$I(\theta) = E[U(x, \theta)^2] = \text{var} U(x, \theta)$$
Fisher kernels

- Fisher information matrix as approx. second derivative
 \[
 E \left[\frac{\partial^2}{\partial \theta^2} L(x, \theta) \right] = E \left[\frac{1}{p(x|\theta)} \frac{\partial^2}{\partial \theta^2} p(x|\theta) \right] - E \left[\left(\frac{1}{p(x|\theta)} \frac{\partial}{\partial \theta} p(x|\theta) \right)^2 \right]
 \approx -E \left[\left(\frac{\partial}{\partial \theta} \log p(x|\theta) \right)^2 \right]
 = -E[U(x, \theta)^2] = -I(\theta)
 \]

- Approx. ML estimate
 \[
 L(x, \theta + \delta \theta) \approx L(x, \theta) + U(x, \theta) \delta \theta - \frac{1}{2} I(\theta)(\delta \theta)^2
 \]
 \[
 \delta \theta_x \approx I(\theta)^{-1} U(x, \theta)
 \]

- Fisher kernel
 \[
 K(x, y) = \delta \theta_x I(\theta) \delta \theta_y = U(x, \theta)I(\theta)^{-1} U(y, \theta)
 \]
Invariance

• Why weighting by \(I \)?

\[
K(x, y) = \delta \theta_x I(\theta) \delta \theta_y = U(x, \theta) I(\theta)^{-1} U(y, \theta)
\]

• Reparametrization \(\theta = \phi(\lambda) \)

\[
L'(x, \lambda) = L(x, \phi(\lambda)) \quad U'(x, \lambda) = U(x, \phi(\lambda)) \dot{\phi}(\lambda)
\]

\[
I'(\lambda) = \dot{\phi}(\lambda) I(\phi(\lambda)) \dot{\phi}(\lambda)
\]

• Fisher kernel is invariant to reparametrization

\[
K(x, y) = U'(I')^{-1} U' = U \phi \phi^{-1} I \phi^{-1} \phi U = UI^{-1} U
\]
Tutorial

- MediaLandscape Player