Contents

Foreword xi
Preface xiii

PART 0: The Background: Projective Geometry, Transformations and Estimation 1

Outline 2

1 Projective Geometry and Transformations of 2D 3
1.1 Planar geometry 3
1.2 The 2D projective plane 4
1.3 Projective transformations 11
1.4 A hierarchy of transformations 16
1.5 The projective geometry of 1D 24
1.6 Topology of the projective plane 26
1.7 Recovery of affine and metric properties from images 27
1.8 More properties of conics 38
1.9 Fixed points and lines 41
1.10 Closure 43

2 Projective Geometry and Transformations of 3D 45
2.1 Points and projective transformations 45
2.2 Representing and transforming planes, lines and quadrics 46
2.3 Twisted cubics 57
2.4 The hierarchy of transformations 58
2.5 The plane at infinity 61
2.6 The absolute conic 63
2.7 The absolute dual quadric 65
2.8 Closure 67

3 Estimation – 2D Projective Transformations 69
3.1 The Direct Linear Transformation (DLT) algorithm 71
3.2 Different cost functions 76
Contents

3.3 Statistical cost functions and Maximum Likelihood estimation 86
3.4 Transformation invariance and normalization 88
3.5 Iterative minimization methods 94
3.6 Experimental comparison of the algorithms 99
3.7 Robust estimation 101
3.8 Automatic computation of a homography 107
3.9 Closure 112

4 Algorithm Evaluation and Error Analysis 117
4.1 Bounds on performance 117
4.2 Covariance of the estimated transformation 123
4.3 Monte Carlo estimation of covariance 134
4.4 Closure 136

PART I: Camera Geometry and Single View Geometry 137
Outline 138

5 Camera Models 139
5.1 Finite cameras 139
5.2 The projective camera 144
5.3 Cameras at infinity 153
5.4 Other camera models 161
5.5 Closure 164

6 Computation of the Camera Matrix P 166
6.1 Basic equations 166
6.2 Geometric error 169
6.3 Restricted camera estimation 173
6.4 Radial distortion 178
6.5 Closure 182

7 More Single View Geometry 184
7.1 Action of a projective camera on planes, lines, and conics 185
7.2 Images of smooth surfaces 189
7.3 Action of a projective camera on quadrics 190
7.4 The importance of the camera centre 192
7.5 Camera calibration and the image of the absolute conic 198
7.6 Vanishing points and vanishing lines 205
7.7 Determining the calibration K from vanishing points and lines 209
7.8 Closure 212

PART II: Two-View Geometry 217
Outline 218
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Epipolar Geometry and the Fundamental Matrix</td>
<td>219</td>
</tr>
<tr>
<td>8.1</td>
<td>Epipolar geometry</td>
<td>219</td>
</tr>
<tr>
<td>8.2</td>
<td>The fundamental matrix F</td>
<td>222</td>
</tr>
<tr>
<td>8.3</td>
<td>Fundamental matrices arising from special motions</td>
<td>228</td>
</tr>
<tr>
<td>8.4</td>
<td>Geometric representation of the fundamental matrix</td>
<td>231</td>
</tr>
<tr>
<td>8.5</td>
<td>Retrieving the camera matrices</td>
<td>234</td>
</tr>
<tr>
<td>8.6</td>
<td>The essential matrix</td>
<td>238</td>
</tr>
<tr>
<td>8.7</td>
<td>Closure</td>
<td>241</td>
</tr>
<tr>
<td>9</td>
<td>3D Reconstruction of Cameras and Structure</td>
<td>244</td>
</tr>
<tr>
<td>9.1</td>
<td>Outline of reconstruction method</td>
<td>244</td>
</tr>
<tr>
<td>9.2</td>
<td>Reconstruction ambiguity</td>
<td>246</td>
</tr>
<tr>
<td>9.3</td>
<td>The projective reconstruction theorem</td>
<td>248</td>
</tr>
<tr>
<td>9.4</td>
<td>Stratified reconstruction</td>
<td>250</td>
</tr>
<tr>
<td>9.5</td>
<td>Direct reconstruction – using ground truth</td>
<td>258</td>
</tr>
<tr>
<td>9.6</td>
<td>Closure</td>
<td>259</td>
</tr>
<tr>
<td>10</td>
<td>Computation of the Fundamental Matrix F</td>
<td>262</td>
</tr>
<tr>
<td>10.1</td>
<td>Basic equations</td>
<td>262</td>
</tr>
<tr>
<td>10.2</td>
<td>The normalized 8-point algorithm</td>
<td>265</td>
</tr>
<tr>
<td>10.3</td>
<td>The algebraic minimization algorithm</td>
<td>266</td>
</tr>
<tr>
<td>10.4</td>
<td>Geometric distance</td>
<td>267</td>
</tr>
<tr>
<td>10.5</td>
<td>Experimental evaluation of the algorithms</td>
<td>272</td>
</tr>
<tr>
<td>10.6</td>
<td>Automatic computation of F</td>
<td>274</td>
</tr>
<tr>
<td>10.7</td>
<td>Special cases of F-computation</td>
<td>277</td>
</tr>
<tr>
<td>10.8</td>
<td>Correspondence of other entities</td>
<td>279</td>
</tr>
<tr>
<td>10.9</td>
<td>Degeneracies</td>
<td>279</td>
</tr>
<tr>
<td>10.10</td>
<td>A geometric interpretation of F-computation</td>
<td>282</td>
</tr>
<tr>
<td>10.11</td>
<td>The envelope of epipolar lines</td>
<td>283</td>
</tr>
<tr>
<td>10.12</td>
<td>Image rectification</td>
<td>289</td>
</tr>
<tr>
<td>10.13</td>
<td>Closure</td>
<td>293</td>
</tr>
<tr>
<td>11</td>
<td>Structure Computation</td>
<td>295</td>
</tr>
<tr>
<td>11.1</td>
<td>Problem statement</td>
<td>295</td>
</tr>
<tr>
<td>11.2</td>
<td>Linear triangulation methods</td>
<td>297</td>
</tr>
<tr>
<td>11.3</td>
<td>Geometric error cost function</td>
<td>299</td>
</tr>
<tr>
<td>11.4</td>
<td>Sampson approximation (first-order geometric correction)</td>
<td>300</td>
</tr>
<tr>
<td>11.5</td>
<td>An optimal solution</td>
<td>301</td>
</tr>
<tr>
<td>11.6</td>
<td>Line reconstruction</td>
<td>306</td>
</tr>
<tr>
<td>11.7</td>
<td>Computing vanishing points</td>
<td>309</td>
</tr>
<tr>
<td>11.8</td>
<td>Closure</td>
<td>310</td>
</tr>
<tr>
<td>12</td>
<td>Scene planes and homographies</td>
<td>312</td>
</tr>
<tr>
<td>12.1</td>
<td>Homographies given the plane and vice versa</td>
<td>312</td>
</tr>
<tr>
<td>12.2</td>
<td>Plane induced homographies given F and image correspondences</td>
<td>316</td>
</tr>
</tbody>
</table>
12.3 Computing F given the homography induced by a plane
12.4 The infinite homography H_∞
12.5 Closure

13 **Affine Epipolar Geometry**
13.1 Affine epipolar geometry
13.2 The affine fundamental matrix
13.3 Estimating F_A from image point correspondences
13.4 Triangulation
13.5 Affine reconstruction
13.6 Necker reversal and the bas-relief ambiguity
13.7 Computing the motion
13.8 Closure

PART III: Three-View Geometry
Outline

14 **The Trifocal Tensor**
14.1 The geometric basis for the trifocal tensor
14.2 The trifocal tensor and tensor notation
14.3 Transfer
14.4 Relationship between fundamental matrices and the trifocal tensor
14.5 Closure

15 **Computation of the Trifocal Tensor T**
15.1 Basic equations
15.2 The normalized linear algorithm
15.3 The algebraic minimization algorithm
15.4 Geometric distance
15.5 Experimental evaluation of the algorithms
15.6 Automatic computation of T
15.7 Special cases of T-computation
15.8 Closure

PART IV: N-View Geometry
Outline

16 **N-Linearities and Multiple View Tensors**
16.1 Bilinear relations
16.2 Trilinear relations
16.3 Quadrilinear relations
16.4 Intersections of four planes
16.5 Counting arguments
16.6 Number of independent equations
16.7 Choosing equations
16.8 Closure 421

17 N-View Computational Methods 423
 17.1 Projective reconstruction – bundle adjustment 423
 17.2 Affine reconstruction – the factorization algorithm 425
 17.3 Projective factorization 429
 17.4 Reconstruction knowing homographies induced by a plane 432
 17.5 Reconstruction from sequences 435
 17.6 Closure 440

18 Auto-Calibration 441
 18.1 Introduction 441
 18.2 Algebraic framework and problem statement 443
 18.3 Calibration using the absolute dual quadric 445
 18.4 The Kruppa equations 454
 18.5 A stratified solution 457
 18.6 Calibration from rotating cameras 466
 18.7 Auto-calibration from planes 469
 18.8 Planar motion 471
 18.9 Auto-calibration of a stereo rig 475
 18.10 Closure 479

19 Duality 483
 19.1 Carlsson–Weinshall duality 483
 19.2 Reduced reconstruction 490
 19.3 Closure 495

20 Cheirality 497
 20.1 Quasi-affine transformations 497
 20.2 Front and back of a camera 501
 20.3 Three-dimensional point sets 501
 20.4 Obtaining a quasi-affine reconstruction 503
 20.5 Effect of transformations on cheirality 503
 20.6 Orientation 505
 20.7 The cheiral inequalities 508
 20.8 Which points are visible in a third view 511
 20.9 Which points are in front of which 513
 20.10 Closure 515

21 Degenerate Configurations 516
 21.1 Camera resectioning 516
 21.2 Degeneracies in two views 523
 21.3 Carlsson–Weinshall duality 530
 21.4 Three-view critical configurations 538
 21.5 Ambiguous views of seven points 542