Visual recognition of human communication

D.Phil. Thesis

Robotics Research Group
Department of Engineering Science
University of Oxford

Supervisor:
Professor Andrew Zisserman

Joon Son Chung
St. Catherine’s College

2017
Abstract

The objective of this work is visual recognition of speech and gestures. Solving this problem opens up a host of applications, such as transcribing archival silent films, or resolving multi-talker simultaneous speech, but most importantly it helps to advance the state of the art in speech recognition by enabling machines to take advantage of the multi-modal nature of human communications. However, visual recognition of speech and gestures is a challenging problem, in part due to the lack of annotations and datasets, but also due to the inter-and intra-personal variations, and in the case of visual speech, ambiguities arising from homophones.

Training a deep learning algorithm requires a lot of training data. We propose a method to automatically collect, process and generate a large-scale audio-visual corpus from television videos temporally aligned with the transcript. To build such dataset, it is essential to know ‘who’ is speaking ‘when’. We develop a ConvNet model that learns joint embedding of the sound and the mouth images from unlabelled data, and apply this network to the tasks of audio-to-video synchronisation and active speaker detection. Not only does this play a crucial role in building the dataset that forms the basis of much of the research done in this thesis, the method learns powerful representations of the visual and auditory inputs which can be used for related tasks such as lip reading. We also show that the methods developed here can be extended to the problem of generating talking faces from audio and still images.

We then propose a number of deep learning models that are able to recognise visual speech at word and sentence level. In both scenarios, we also demonstrate recognition performance that exceeds the state of the art on public datasets; and in the case of the latter, the lip reading performance beats a professional lip reader on videos from BBC television. We also demonstrate that if audio is available, then visual information helps to improve speech recognition performance.

Next, we present a method to recognise and localise short temporal signals in image time series, where strong supervision is not available for training. We propose image encodings and ConvNet-based architectures to first recognise the signal, and then to localise the signal using back-propagation. The method is demonstrated for localising spoken words in audio, and for localising signed gestures in British Sign Language (BSL) videos.

Finally, we explore the problem of speaker recognition. Whereas previous works for speaker identification have been limited to constrained conditions, here we build a new large-scale speaker recognition dataset collected from ‘in the wild’ videos using an automated pipeline. We propose a number of ConvNet architectures that outperforms traditional baselines on this dataset.
Declaration

This thesis is submitted to the Department of Engineering Science, University of Oxford, in fulfilment of the requirements for the degree of Doctor of Philosophy. This thesis is entirely my own work, and except where otherwise stated, describes my own research.

Joon Son Chung
Acknowledgements

I would like to thank my supervisor Professor Andrew Zisserman for his guidance, support, advice and encouragement. I would also like to thank my collaborators, Relja Arandjelović, Giles Bergel, Alexandra Franklin, Amir Jamaludin, Arsha Nagrani, Andrew Senior and Oriol Vinyals for all their contributions. Special thanks to Rob Cooper and Matt Haynes at BBC Research for help in obtaining the datasets. I also thank everyone in VGG for making it such a nice environment to work in. I would like to thank my family for all their support and understanding.
Contents

1 Introduction 1

1.1 Objective and motivation 1

1.2 Key challenges 2

1.3 Contributions 4

1.4 Publications 6

2 Background 8

2.1 Deep learning 8

2.2 Applications 11

2.3 Conclusion 22

3 Building a large-scale audio-visual corpus 23

3.1 Program selection 24

3.2 Audio processing 25

3.3 Video processing 27

3.4 Statistics and conclusion 29

4 Learning a synchronization network for lip motion and audio 30

4.1 The SyncNet model 31

4.2 Dataset 35

4.3 Extending the model to profile views 36

4.4 Experiments 38

4.5 Conclusion 41

5 Deep learning for word-level lip reading 43

5.1 Models 45

5.2 Dataset 49
Contents

5.3 Experiments ... 51
5.4 Conclusion .. 54

6 Deep learning for sentence-level lip reading and multi-modal speech recognition ... 55

6.1 The Watch, Listen, Attend and Spell model ... 56
6.2 Training strategy ... 62
6.3 Dataset .. 65
6.4 Experiments on frontal view datasets ... 66
6.5 Experiments on multi view datasets ... 72
6.6 Conclusion .. 75

7 Generating talking faces from audio ... 76

7.1 The Speech2Vid model ... 77
7.2 Dataset .. 83
7.3 Experiments .. 84
7.4 Conclusion .. 88

8 Word spotting in audio and sign language ... 89

8.1 Representations and architectures for recognizing time sequences ... 91
8.2 Dataset .. 99
8.3 Implementation details ... 101
8.4 Experiments .. 103
8.5 Conclusion .. 109

9 Speaker identification from audio ... 111

9.1 Dataset .. 112
9.2 Models .. 116
9.3 Experiments .. 118
9.4 Conclusions ... 121

10 Conclusion ... 123

10.1 Achievements ... 123
10.2 Suggestion for future research ... 125
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR</td>
<td>Automatic Speech Recognition</td>
</tr>
<tr>
<td>BLEU</td>
<td>Bilingual Evaluation Understudy</td>
</tr>
<tr>
<td>BSL</td>
<td>British Sign Language</td>
</tr>
<tr>
<td>CCA</td>
<td>Canonical Correlation Analysis</td>
</tr>
<tr>
<td>CNN</td>
<td>Convolutional Neural Network</td>
</tr>
<tr>
<td>CoIA</td>
<td>Co-Inertia Analysis</td>
</tr>
<tr>
<td>CTC</td>
<td>Connectionist Temporal Classification</td>
</tr>
<tr>
<td>DBF</td>
<td>Deep Bottleneck Feature</td>
</tr>
<tr>
<td>DCT</td>
<td>Discrete Cosine Transform</td>
</tr>
<tr>
<td>DNN</td>
<td>Deep Neural Network</td>
</tr>
<tr>
<td>ED</td>
<td>Edit Distance</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>GIF</td>
<td>GA-based Informative Feature</td>
</tr>
<tr>
<td>GMM</td>
<td>Gaussian Mixture Model</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Model</td>
</tr>
<tr>
<td>HOG</td>
<td>Histogram of Oriented Gradients</td>
</tr>
<tr>
<td>LDA</td>
<td>Linear Discriminant Analysis</td>
</tr>
<tr>
<td>LSTM</td>
<td>Long Short Term Memory</td>
</tr>
<tr>
<td>MFCC</td>
<td>Mel-Frequency Cepstral Coefficients</td>
</tr>
<tr>
<td>MIL</td>
<td>Multiple Instance Learning</td>
</tr>
<tr>
<td>MLP</td>
<td>Multi Layer Perceptrons</td>
</tr>
<tr>
<td>OCR</td>
<td>Optical Character Recognition</td>
</tr>
<tr>
<td>PLP</td>
<td>Probabilistic Logic Programming</td>
</tr>
<tr>
<td>POI</td>
<td>Person of Interest</td>
</tr>
<tr>
<td>ReLU</td>
<td>Rectified Linear Units</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>RNN</td>
<td>Recurrent Neural Network</td>
</tr>
<tr>
<td>SGD</td>
<td>Stochastic Gradient Descent</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>SIFT</td>
<td>Scale-Invariant Feature Transform</td>
</tr>
<tr>
<td>SSD</td>
<td>Single Shot MultiBox Detector</td>
</tr>
<tr>
<td>UBM</td>
<td>Universal Background Model</td>
</tr>
</tbody>
</table>

Supplementary materials

Supplementary materials (including video examples) can be downloaded from the VGG website http://www.robots.ox.ac.uk/~vgg, and are also available from the Oxford Research Archive, DOI 10.5287/bodleian:r1bmVwpOn.
Chapter 1

Introduction

1.1 Objective and motivation

Humans use many signals to communicate with each other – speech is the primary signal for many people, but mouth shapes (McGurk and MacDonald 1976), facial expressions (Morris 1994), body gestures (Goldin-Meadow 1999) and haptics (Field 2004) also play a crucial role in human communication and speech understanding.

So suppose you are having a conversation with someone at a party, or in a noisy train station. Humans have a remarkable ability to make use of both visual and auditory inputs to understand what is said, particularly in environments with background noise.

On the other hand, the research community in speech perception has mostly focussed on the audio part of the inherently multimodal signal. Speech perception in noisy environments is an extremely difficult task, particularly without the visual information. Therefore while current automatic speech recognition (ASR) systems can achieve very high accuracy in noiseless environments, they often struggle in presence of background noise.

The objective of this thesis is to bridge this gap.
1.2 Key challenges

Not only would this be convenient to normal-hearing users of ASR-based services that are increasingly powering our everyday lives, this is extremely beneficial to the hard of hearing and the elderly for whom the visual expressions and gestures are important modes of communication. The ability to recognise visual communications also opens up a host of other applications, including resolving simultaneous multi-talker speech, and transcribing archival silent films.

The research into image, video and speech recognition have seen tremendous progress in recent years, due to the advances in deep learning. However, the vast majority of research conducted covers specific areas such as object recognition in images, and speech recognition; the progress related to visual recognition of speech and languages have been limited, somewhat due to the insufficient availability of training data.

Fortunately, there are vast amounts of data available on television and the Internet that can be used by machines to learn from, such as that shown in Figure 1.1. This thesis develops methods that can learn to recognise and understand visual speech and gestures from this large-scale data. Specific contributions are described in Section 1.3.

Ambiguities in audio-visual speech recognition

Visual speech recognition is a notoriously difficult task, and it is understood that even the best lip readers can only
1.2. Key challenges

Figure 1.2: A single viseme can represent several different phonemes. Image adapted from Paulus (2013).

decipher less than half the words in most scenarios (Marschark and Spencer, 2010). This is due to the ambiguity at the word level arising from homophones – different characters that produce exactly the same lip sequence (e.g. ‘p’ and ‘b’) as can be seen in Figure 1.2. So suppose you see somebody say ‘as I walk in the park, I hear my dog bark’, you can only differentiate ‘park’ and ‘bark’ by the context. To a lesser extent, there are pairs of words in English that sound very similar, but look different on the lips, for example ‘beam’ and ‘bean’. This presents two challenges: the first is how to combine the visual and auditory information, and the second is how to model complex long-term dependencies such as linguistic context.

Variability in speech and gestures. Automated speech and gesture recognition is challenging because of high intra- and inter-person variability (O’Shaughnessy, 2008). For example in speech, there are a number of sources for this variability, including: (i) regional accents; (ii) speaker physiology; (iii) speaking style; (iv) speed; (v) emotional state. Co-articulation also makes the tasks more challenging, since the transition from the previous and to the next word can affect the mouth shape in speech, and the trajectory of body parts in gestures.

Lack of training data. The most common form of machine learning is supervised learning. Many notable applications of machine learning in recent years have also been in this area, thanks to the availability of large datasets such as ImageNet (Deng
et al., 2009). However, such readily-available datasets do not exist in the field of visual speech or gesture recognition. This raises two challenges: (i) how to generate a corpus of labelled data from existing videos (e.g. from television or YouTube) with minimum human intervention; (ii) how to make use of abundant unlabelled data, when the amount of labelled data is limited.

Weak supervision in sign language recognition. Traditionally for machine learning applications relating to time series, the supervision is strong – either time aligned or, if not aligned, then complete. For example in audio-visual speech recognition, there is a one-to-one correspondence between the video and the audio, and hence the text in the transcript. However such correspondence does not exist in sign language videos. Therefore, training to recognise gestures in sign language from TV subtitles is extremely challenging, as the supervision would be both weak (the signs are not temporally aligned with the audio) and noisy (the occurrence of a word in the transcript does not imply that it will be signed). The question to consider here is how to design models that can learn to recognise short temporal signals from training data with such weak supervision.

1.3 Contributions

In this section, we list the main contributions made in this thesis.

Building a large-scale audio-visual corpus. (Chapter 3) Here, we develop a multi-stage pipeline for fully automated large-scale data collection from TV broadcasts. With this we generate a dataset with over a million word instances, spoken by over a thousand different people. This data is used in various experiments throughout this thesis.

Learning a synchronization network for lip motion and audio. (Chapter 4) We propose a two-stream ConvNet architecture and a self-supervised training strategy
that enables a joint embedding of the sound and the mouth images to be learnt from unlabelled data. The trained network is used to determine the lip-sync error in a video. We also apply the network to the task of active speaker detection, and we set a new state-of-the-art on a standard benchmark dataset.

Deep learning for word-level lip reading. (Chapter 5) In this chapter, we present various deep learning architectures that are able to effectively learn and recognise hundreds of words from the large-scale dataset generated in Chapter 3. We also demonstrate a recognition performance that exceeds the state of the art on a standard public benchmark dataset.

Deep learning for sentence-level lip reading. (Chapter 6) In this chapter, we develop an attention-based model that is able to lip read unconstrained natural language sentences, from ‘in the wild’ videos. This lip reading performance beats a professional lip reader on videos from BBC television, and we also demonstrate that if audio is available, then visual information helps to improve speech recognition performance.

Generating talking faces from audio. (Chapter 7) Here, we show that the self-supervised methods of Chapter 4 can be extended to the problem of generating videos of talking faces. The method takes still images of the target face and an audio speech segment as inputs; and produces a video of the target face lip synched with the audio. To achieve this we propose an encoder-decoder CNN model that uses a joint embedding of the face and audio to generate synthesised talking face video frames.

Word spotting in audio and sign language. (Chapter 8) This chapter presents a method to recognise and localise short temporal signals in image time series, where strong supervision is not available for training. We propose image encodings and ConvNet-based architectures to first recognise the signal, and then to localise the signal using back-propagation. The method is demonstrated for localising spoken
words in audio, and for localising signed gestures in British Sign Language (BSL) videos.

Speaker identification from audio. (Chapter 9) In this final chapter, we depart from the problem of ‘what’ is being said, and explore methods for recognising ‘who’ is saying it. Most of the previous works for speaker identification are limited to constrained conditions, due to the synthetic nature of existing datasets. This chapter presents a fully automated pipeline to generate a large scale text-independent speaker identification dataset collected ‘in the wild’, and propose a number of ConvNet-based architectures that outperform traditional baselines for speaker recognition.

1.4 Publications

The research conducted in this thesis has resulted in a number of peer-reviewed publications listed below in chronological order.

- J. S. Chung, A. Zisserman “**Signs in time: Encoding human motion as a temporal image**” ECCV Workshop, 2016. \cite{Chung:2016:Signs}

- J. S. Chung, A. Zisserman “**Lip Reading in the Wild**” ACCV, 2016. *Oral presentation. Best student paper award.* \cite{Chung:2016:lipreading}

- J. S. Chung, A. Zisserman “**Out of time: automated lip sync in the wild**” ACCV Workshop, 2016. \cite{Chung:2016:outoftime}

- A. Nagrani†, J. S. Chung†, A. Zisserman “**VoxCeleb: a large-scale speaker identification dataset**” Interspeech, 2017. *Oral presentation. Best student paper award.* \cite{Nagrani:2017:voxceleb}
• J. S. Chung†, A. Jamaludin†, A. Zisserman “You said that?” BMVC, 2017.
Oral presentation. (Chung et al. 2017a)

• J. S. Chung, A. Zisserman “Lip Reading in Profile” BMVC, 2017. (Chung and Zisserman, 2017)

† represents equal contributions between authors.
Chapter 2

Background

In this chapter we review the development in methods and applications relating to this thesis.

2.1 Deep learning

In this section we describe recent developments in deep learning, which have dramatically improved the state-of-the-art in many applications, such as image (Krizhevsky et al., 2012, Simonyan and Zisserman, 2015) and speech recognition (Graves and Schmidhuber, 2005, Graves et al., 2006a).

Deep learning can be seen as a form of hierarchical learning, where algorithms make use of multiple levels of simple but non-linear transformations to gradually transform the raw input into high level concepts. With multiple levels of such simple transformations, very powerful and complex functions can be learnt.

Neural networks are modelled after interactions of neurons in a human brain. For example, the architecture of image recognition CNNs is related to the mammalian visual cortex that has a layered structure (Hubel and Wiesel, 1962), and processes images in layers of increasing complexity – the first layer distinguishes basic attributes like lines and curves, while brain regions further down are sensitive to higher level
2.1. Deep learning concepts, for instance, if the image is of a dog or a cat.

Deep learning methods require little engineering by hand, but generally require a large dataset to train from, and also substantial processing power.

2.1.1 Training with backpropagation.

A neural network consists of multiple layers of simple modules, which are subject to learning. These networks can be trained by stochastic gradient descent (SGD) using the backpropagation procedure. This means that the classifier is jointly trained with the feature extractors.

The backpropagation procedure involves using the chain rule to iteratively compute gradients for each layer, working backwards from the objective. Having computed the gradients for each layer, it is trivial to compute the gradients with respect to the weights of each module.

2.1.2 Convolutional Neural Networks (CNN).

Research has shown that ConvNets \cite{LeCun1989, LeCun1998} are easier to train and generalise better than other types of feedforward networks for many applications, particularly in computer vision.

ConvNets are obtained by stacking multiple layers of convolutional filter banks, each followed by a non-linear response function. Each convolutional layer takes an input which is a feature map, and outputs a new feature map which is connected to the input through a set of weights called filter bank. This is then passed through a non-linear activation function, most popular being ReLU \cite{Glorot2011}. All units in a feature map share the same filter bank – this design is beneficial for two reasons: reduction in the number of parameters, and invariance to the spatial location in the
input image and its features.

Convolutional layers are usually used together with pooling layers, for which popular functions are max pooling and average pooling. The pooling layers help downsample the feature maps to reduce dimensionality, and also help build invariance to the spatial location of the image.

Successful applications of CNNs go back several decades for a limited number of domains such as digit recognition (LeCun et al., 1989); however the breakthrough in performance came in recent years for many application such as object (Krizhevsky et al., 2012, Simonyan and Zisserman, 2015) and face (Parkhi et al., 2015, Schroff et al., 2015) recognition, thanks to the increased availability of computing power and datasets.

2.1.3 Recurrent Neural Networks (RNN).

Recurrent neural networks are powerful systems that are able to handle sequential inputs, such as speech and language. RNNs takes the inputs in a sequence, and maintains a ‘state’ in their hidden units that implicitly stores the relevant information about the history of the past inputs. However, for a long time, they were of limited use in the research community as they were difficult to train, mainly due to the vanishing and exploding gradient problems.

With advances in their architecture (El Hihi and Bengio, 1996, Hochreiter and Schmidhuber, 1997) and training strategies (Pascanu et al., 2013, Sutskever, 2013), RNNs have seen increasing success in many sequence-related applications. In particular, the introduction of Long Short Term Memory (LSTM) modules (Hochreiter and Schmidhuber, 1997) have proved very important, since its explicit memory module was good at modelling long-term dependencies, and also the design was less susceptible to the problem of vanishing and exploding gradients.
2.2 Applications

RNN architectures can take many different forms, but of particular relevance to the methods presented in this thesis are sequence-to-sequence models (Sutskever et al., 2014). This class of models are made up of an encoder network that generates a representation of the input sequence as the final state vector, and a decoder network that produces an output sequence, one element at a time. The network is often used with an attention mechanism (Bahdanau et al., 2015, Chorowski et al., 2015) that allows the decoder to ‘peek into’ the input at every output step. These have proven very effective for a number of applications, including machine translation (Bahdanau et al., 2015) and automatic speech recognition (Chan et al., 2015).

2.1.4 Self-supervised learning

Supervised learning has been the most prevalent paradigm in recent computer vision methods, but there is also a good deal of previous work on self-supervised representation learning, where raw data is used as its own source of supervision. One of the earlier adaptations is the work on auto-encoders (Hinton and Salakhutdinov, 2006), and there are a number of more recent applications on learning representations via data imputation. The work on predicting co-occurrence (Isola et al., 2015) and context by inpainting (Pathak et al., 2016) fall into this category. Zhang et al. (2016) uses cross-channel self-supervision to train a model that predicts RGB images given only single-channel greyscale images. Of close relevance to the methods developed in this thesis is the work of Wang and Gupta (2015) which trains Siamese networks (Chopra et al., 2005) to learn image representations from video, using the assumption that two patches from a continuous video track is probably of the same object.

2.2 Applications

This section reviews the application of machine learning methods that are relevant to this thesis, namely vision, speech and language.
2.2.1 Audio-visual speech recognition

Visual speech recognition. Research on visual speech recognition (lip reading) has a long history. A thorough survey of shallow (i.e. not deep learning) methods is given in the recent review [Zhou et al., 2014b], and will not be repeated in detail here. Many of the existing works in this field have followed similar pipelines which first extract spatio-temporal features around the lips (either motion-based, geometric-feature based or both), and then align these features with respect to a canonical template. For example, [Pei et al., 2013], which holds state-of-the-art on many datasets, extracts the patch trajectory as a spatio-temporal feature, and then aligns these features to reference motion patterns.

A number of recent works have used deep learning methods to tackle problems related to lip reading. [Koller et al., 2015] train an image classifier CNN to discriminate *visemes* (mouth shapes, visual equivalent of *phonemes*) on a sign language dataset where the signers mouth words. Similar CNN-based methods have been proposed by [Noda et al., 2014] to predict *phonemes* in spoken Japanese. In the context of word recognition, [Tamura et al., 2015] have used deep bottleneck features (DBF) to encode *shallow* input features such as LDA and GIF ([Ukai et al., 2012]). Similarly [Petridis and Pantic, 2016] use DBF to encode the image for every frame, and train a LSTM classifier to generate a word-level classification. [Wand et al., 2016] use an LSTM with HOG input features to recognise short phrases. The shortage of training data in lip reading presumably contributes to the continued popularity of shallow features.

A recent work [Assael et al., 2016] uses a CNN and LSTM-based network and Connectionist Temporal Classification (CTC) [Graves et al., 2006b] to compute the labelling. This reports strong speaker-independent performance on the constrained grammar and 51 word vocabulary of the GRID dataset [Cooke et al., 2006]. However, the method, suitably modified, should be applicable to longer, more general sentences.
2.2. Applications

Audio-visual speech recognition. The problems of audio-visual speech recognition (AVSR) and lip reading are closely linked, and as such, many of the existing works are based on similar methods. A number of papers have attempted to predict phonemes as a proxy task to speech recognition – for example, Mroueh et al. (2015) employ feed-forward Deep Neural Networks (DNNs) to perform phoneme classification on a non-public audio-visual dataset.

The use of HMMs together with hand-crafted or pre-trained visual features have proved popular – Tamura et al. (2015) encodes input images using DBF; Galatas et al. (2012) used DCT; and Noda et al. (2015) uses a CNN pre-trained to classify phonemes; all three combine these features with HMMs to classify spoken digits or isolated words. As with lip reading, there has been little attempt to develop AVSR systems that generalise to real-world settings.

Speech recognition. There is a wealth of literature on ‘shallow’ speech recognition systems that utilise separate components for acoustic and language-modelling functions (e.g. hybrid DNN-HMM systems), that we will not review here. We restrict this review to methods that can be trained end-to-end.

For the most part, prior work can be divided into two types. The first type uses CTC (Graves et al., 2006b), where the model typically predicts framewise labels and then looks for the optimal alignment between the framewise predictions and the output sequence. The weakness is that the output labels are not conditioned on each other.

The second type is sequence-to-sequence models (Sutskever et al., 2014) that first read all of the input sequence before starting to predict the output sentence. A number of papers have adopted this approach for speech recognition (Chorowski et al., 2014, 2015), and of which the most related to the work in this thesis is that of Chan et al. (2015) which proposes an elegant sequence-to-sequence method to transcribe audio
signal to characters. They utilise a number of the latest sequence learning tricks such as scheduled sampling (Bengio et al., 2015) and attention (Chorowski et al., 2015). We take many inspirations from this work.

Audio-visual datasets. One of the major obstacles to progress in this field has been the lack of suitable datasets (Zhou et al., 2014b). Table 2.1 gives a summary of existing public datasets. The amount of available data is far from sufficient to train scalable and representative models that will be able to generalise beyond the controlled environments and the very limited domains (e.g., digits and the alphabet).

<table>
<thead>
<tr>
<th>Name</th>
<th>Env.</th>
<th>Output</th>
<th>I/D</th>
<th># class</th>
<th># subj.</th>
<th>Best perf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVICAR a</td>
<td>In-car</td>
<td>Digits</td>
<td>D</td>
<td>10</td>
<td>100</td>
<td>37.9% h</td>
</tr>
<tr>
<td>AVLetter b</td>
<td>Lab</td>
<td>Alphabet</td>
<td>I</td>
<td>26</td>
<td>10</td>
<td>43.5% j</td>
</tr>
<tr>
<td>CUAVE c</td>
<td>Lab</td>
<td>Digits</td>
<td>I</td>
<td>10</td>
<td>36</td>
<td>83.0% k</td>
</tr>
<tr>
<td>GRID d</td>
<td>Lab</td>
<td>Sent.</td>
<td>D</td>
<td>8.5*</td>
<td>34</td>
<td>79.6% l</td>
</tr>
<tr>
<td>OuluVS1 e</td>
<td>Lab</td>
<td>Phrases</td>
<td>I</td>
<td>10</td>
<td>20</td>
<td>89.7% m</td>
</tr>
<tr>
<td>OuluVS2 f</td>
<td>Lab</td>
<td>Phrases</td>
<td>I</td>
<td>10</td>
<td>52</td>
<td>73.5% n</td>
</tr>
<tr>
<td>OuluVS2 g</td>
<td>Lab</td>
<td>Digits</td>
<td>D</td>
<td>10</td>
<td>52</td>
<td>-</td>
</tr>
<tr>
<td>Modality h</td>
<td>Lab</td>
<td>Sent.</td>
<td>D</td>
<td>182</td>
<td>35</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.1: Existing lip reading datasets. I for Isolated (one word, letter or digit per recording); D for Delimited recording. The reported performance is on speaker-independent experiments. (a For GRID (Cooke et al., 2006), there are 51 classes in total, but the first word in a phrase is restricted to 4, the second word 4, etc. 8.5 is the average number of possible classes at each position in the phrase.) a Lee et al. (2004); b Matthews et al. (2002); c Patterson et al. (2002); d Cooke et al. (2006); e Zhao et al. (2009); f Anina et al. (2015b); g Czyzewski et al. (2017); h Fu et al. (2008); i Zhao et al. (2009); k Papandreou et al. (2009); l Wand et al. (2016); m Pei et al. (2013); n ?. 2.2.2 Audio-to-video synchronisation

There is a large body of work on the audio to video synchronisation problem. However the majority of these are based on methods that are not available to the television receiver (e.g. embedding timestamps in the transport stream). Instead, we focus our review on computer vision methods that only rely on the audio-visual data.

Intermediate representations. Phoneme recognition is often used as a proxy task for solving the lip-sync problem. Lewis (1991), linear prediction is used to provide
phoneme recognition from audio, and the recognised phonemes are associated with mouth positions to provide lip-sync video. Morishima et al. (2002) classify the face parameters into visemes, and uses the viseme to phoneme mapping to obtain the synchronisation. Although Koster et al. (1994) and McAllister et al. (1997) do not explicitly classify the sounds into phonemes, their approaches are similar to those above in that they develop models by having the speaker record a set of vowels. Both Koster et al. (1994) and McAllister et al. (1997) correlate face parameters such as jaw position to the FFT of the sound signal. Zoric and Pandzic (2005) have used neural networks to tackle the problem. A multi-layer feedforward neural network is trained to predict the viseme from MFCC input vectors. A parametric face model is used for the visual processing.

Embeddings. More recent papers have attempted to find correspondence between speech and visual data without such labels. A number of approaches are based on canonical correlation analysis (CCA) (Bredin and Chollet, 2007, Sargin et al., 2007) or co-inertia analysis (CoIA) (Rua et al., 2009) of audio and visual features (e.g. geometric parameters or 2D DCT features). The most related work to ours is that of Marcheret et al. (2015) that uses a Deep Neural Network (DNN)-based classifier to determine the time offset based also on pre-defined visual features (speech class likelihoods, bottleneck features, etc.) rather than learning the visual features directly.

2.2.3 Sign language recognition

Most of the work done on sign language recognition is at word-level, *i.e.* a single classification is produced for an input stream. It is therefore a particular application of action recognition.

One-shot learning. The amount of strongly labelled data in sign language gestures is limited, hence many papers have proposed one-shot methods where only single training example for every class is learnt. The method usually involves nearest neig-
bour matching on a feature or combination of features. The best performing model from Krishnan and Sarkar (2013) extracts frame-wise HoG features, and applies dynamic time warping (Vintsyuk, 1968) to find the nearest gesture in the training examples. Wan et al. (2013) take a similar one-shot approach, but instead uses RGB-D frames to extract 3D EMoSIFT (a variant of SIFT) (Wan et al., 2014) features. Although it has been shown that these methods can produce a reasonable performance in person-specific gesture recognition, it is difficult for these models to generalise to other signers given the variability in how signs are performed. A number of papers also have attempted to learn sign language gestures using RGB-D data from Kinect (Cooper et al., 2012, Zafrulla et al., 2011), but we do not use the depth data in this project as the quantity of available data is limited.

Weakly supervised learning. A number of papers have attempted to learn gestures using the weakly labelled data from subtitled sign language TV broadcasts. Words are likely to appear in the subtitles where they are signed, though this is not always the case. Therefore, Buehler et al. (2009) split the data to ‘positive’ sequences where a word is likely to occur, and ‘negative’ where it is not. Using the pose estimate and the hand shape, a multiple instance learning method is used to find the signs that occur most frequently within the positive sequences. The extracted signs can be used to train a signer-independent classifier (Buehler et al., 2010). Cooper and Bowden (2009) use a similar approach using the positive and the negative bags, but learns only from the pose estimates, and uses a priori mining instead of MIL to extract the signs.

One-shot learning with weakly labelled reservoir. Pfister et al. (2014a) show that the performance of a gesture classifier can be improved by combining one-shot learning with a ‘reservoir’ of weakly supervised examples. The authors first train a one-shot detector using the Global Alignment Kernel (Cuturi, 2011) instead of dynamic time warping. Pose estimates and HoG of the hands are used as the features.
The detector is then used to find new samples of the learned sign - but this is restricted to a temporal window provided by the weak supervision. It is easier to learn an accurate classifier using this method than learning solely from the weakly labelled data. The new samples are then used to train a stronger classifier.

End-to-end learning with CNN. There are a number of recent CNN-based methods that are used to recognise signed gestures. Koller et al. (2016a,b) starts from a CNN pre-trained on a large database of labelled hand shapes, and combines this with an HMM to train a system that can recognise signs from continuous videos. The model is trained on German sign language (GSL) sentences with ‘gloss’ annotation (a morpheme-by-morpheme ‘transcription’ using English words; *e.g.* the sentence ‘You are not cooking today’ would be annotated as ‘TODAY YOU-all neg-COOK’.) Similarly, Camgoz et al. (2017) proposes a CNN-LSTM model trained with CTC loss to recognise signs from continuous sentences. These methods can be trained end-to-end, however cannot be used for translation, since they rely on the monotonic alignment between the signs and the gloss sentence.

Datasets. There are a number of benchmark datasets in sign language recognition. Table 2.2 gives a summary of the datasets, of which WTH-PHOENIX and SIGNUM are the most popular. Both datasets have been transcribed with gloss annotation, which requires a significant amount of manual effort, hence the limitation in size. A number of BSL datasets also exist (such as that introduced by Pfister et al. (2014a)), but these lack gloss annotation, and are not publicly available.

<table>
<thead>
<tr>
<th>Name</th>
<th>Language</th>
<th>Output</th>
<th># samples</th>
<th># class</th>
<th># subj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGS Kinect 40 a</td>
<td>German</td>
<td>Words</td>
<td>3K</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>RWTH-PHOENIX b</td>
<td>German</td>
<td>Sentences</td>
<td>46K</td>
<td>1,200</td>
<td>9</td>
</tr>
<tr>
<td>SIGNUM c</td>
<td>German</td>
<td>Sentences</td>
<td>33K</td>
<td>450</td>
<td>25</td>
</tr>
<tr>
<td>Boston ASL LVD d</td>
<td>American</td>
<td>Words</td>
<td>10K</td>
<td>3,300</td>
<td>6</td>
</tr>
<tr>
<td>LSA64 e</td>
<td>Argentinian</td>
<td>Words</td>
<td>3K</td>
<td>64</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2.2: Existing sign language recognition datasets. a Lee et al. (2004); b Forster et al. (2012); c Von Agris et al. (2008); d Thangali et al. (2011); e Ronchetti et al. (2016).
2.2. Applications

2.2.4 Speaker identification and verification

Traditional methods. For a long time, speaker identification was the domain of Gaussian Mixture Models (GMMs) trained on low dimensional feature vectors \cite{Reynolds:1995, Reynolds:2000}. The state of the art in more recent times involves both the use of joint factor analysis (JFA) based methods which model speaker and channel subspaces separately \cite{Kenny:2005}, and i-vectors which attempt to model both subspaces into a single compact, low-dimensional space \cite{Dehak:2011}. Although state of the art in speaker recognition tasks, these methods all have one thing in common – they rely on a low dimensional representation of the audio input, such as Mel Frequency Cepstrum Coefficients (MFCCs). However, not only does the performance of MFCCs degrade rapidly in real world noise \cite{Hansen:2001, Yapanel:2002}, but by focusing only on the overall spectral envelope of short frames, MFCCs may be lacking in speaker-discriminating features (such as pitch information).

Deep learning methods. A number of recent papers have used neural network based methods for speaker identification. The most relevant to our methods is Lukic \emph{et al.} \cite{Lukic:2016} which trains a vision-style CNN on voice spectrograms to identify speakers on the TIMIT database. Chen and Salman \cite{Chen:2011} uses a Siamese feedforward DNN to discriminatively compare two voices, however this relies on pre-computed MFCC features rather than learning the features in an end-to-end manner. Yella \emph{et al.} \cite{Yella:2014} also uses a similar feedforward network to discriminatively train a speaker recognition system – here, the network also learns the features instead of using MFCCs. Heigold \emph{et al.} \cite{Heigold:2016} proposes an end-to-end model with a LSTM feature extractor, and demonstrate significant benefits over a feedforward DNN on text-dependent speaker recognition task.

Datasets. Many existing datasets are obtained under controlled conditions, for ex-
2.2. Applications

ample: forensic data intercepted by police officials (van der Vloed et al., 2014), data from telephone calls (Hennebert et al., 2000), speech recorded live in high quality environments such as acoustic laboratories (Garofolo et al., 1993; Millar et al., 1994), or speech recorded from mobile devices (McCool and Marcel, 2009; Woo et al., 2006). The Forensic Comparison dataset (Morrison et al., 2015) consists of more natural speech but has been manually processed to remove extraneous noises and crosstalk. All the above datasets are also obtained from single-speaker environments, and are free from audience noise and overlapping speech.

Datasets obtained from multi-speaker environments include those from recorded meeting data (Carletta et al., 2005; Janin et al., 2003), or from audio broadcasts (Bell et al., 2015). These datasets usually contain audio samples under less controlled conditions. Some datasets contain artificial degradation in an attempt to mimic real world noise, such as those developed using the TIMIT dataset (Garofolo et al., 1993): NTIMIT, (transmitting TIMIT recordings through a telephone handset) and CTIMIT, (passing TIMIT files through cellular telephone circuits). The only freely available dataset curated from multimedia is the Speakers in the Wild (SITW) dataset (McLaren et al., 2016), which contains speech samples of 299 speakers across unconstrained or ‘wild’ conditions. This is a valuable dataset, but to create it the speech samples have been hand-annotated. Scaling it further, for example to thousands of speakers across tens of thousands of utterances, would require the use of a service such as Amazon Mechanical Turk (AMT). In the computer vision community AMT like services have been used to produce very large-scale datasets, such as ImageNet (Russakovsky et al., 2015).

Table 2.3 summarises existing speaker identification datasets. Besides lacking real world conditions, most of these datasets have been collected with great manual effort, other than (Bell et al., 2015) which was obtained by mapping subtitles and transcripts to broadcast data.
<table>
<thead>
<tr>
<th>Name</th>
<th>Cond.</th>
<th>Free</th>
<th># POI</th>
<th># Utter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELSDSR (^a)</td>
<td>Clean Speech</td>
<td>✓</td>
<td>22</td>
<td>198</td>
</tr>
<tr>
<td>MIT Mobile (^b)</td>
<td>Mobile Devices</td>
<td>-</td>
<td>88</td>
<td>7,884</td>
</tr>
<tr>
<td>SWB (^c)</td>
<td>Telephony</td>
<td>-</td>
<td>3,114</td>
<td>33,039</td>
</tr>
<tr>
<td>POLYCOST (^d)</td>
<td>Telephony</td>
<td>-</td>
<td>133</td>
<td>1,285(^\d)</td>
</tr>
<tr>
<td>ICSI Meeting Corpus (^e)</td>
<td>Meetings</td>
<td>-</td>
<td>53</td>
<td>922</td>
</tr>
<tr>
<td>Forensic Comparison (^j)</td>
<td>Telephony</td>
<td>✓</td>
<td>552</td>
<td>1,264</td>
</tr>
<tr>
<td>ANDOSL (^g)</td>
<td>Clean speech</td>
<td>-</td>
<td>204</td>
<td>33,900</td>
</tr>
<tr>
<td>TIMIT (^h) (\dagger)</td>
<td>Clean speech</td>
<td>-</td>
<td>630</td>
<td>6,300</td>
</tr>
<tr>
<td>SITW (^i)</td>
<td>Multi-media</td>
<td>✓</td>
<td>299</td>
<td>2,800</td>
</tr>
<tr>
<td>NIST SRE (^j)</td>
<td>Clean speech</td>
<td>-</td>
<td>2,000+</td>
<td>*</td>
</tr>
<tr>
<td>VoxCeleb</td>
<td>Multi-media</td>
<td>✓</td>
<td>1,251</td>
<td>145,000</td>
</tr>
</tbody>
</table>

Table 2.3: Comparison of existing speaker identification datasets. **Cond.:** Acoustic conditions; **POI:** Person of Interest; **Utter.:** Approximate number of utterances. \(^\dagger\)And its derivatives; \(^\ddagger\)Number of telephone calls. * varies by year. \(^a\)Feng and Hansen (2005); \(^b\)Woo et al. (2006); \(^c\)Godfrey et al. (1992); \(^d\)Hennebert et al. (2000); \(^e\)Janin et al. (2003); \(^f\)Morrison et al. (2015); \(^g\)Millar et al. (1994); \(^h\)Fisher et al. (1986); \(^i\)McLaren et al. (2016); \(^j\)Greenberg et al. (2013).

2.2.5 Visual speech synthesis

There are various works that proposed methods to generate or synthesise videos of talking heads from either audio or text sources.

The majority of the existing works are based on frame reselection from a video. Fan et al. (2015) propose a method based on a bi-directional LSTM that selects a target mouth region from a dictionary of saved target frames. The lower half of the face from the selected frame is then blend back into the background face. Similarly, Charles et al. (2016) train a model to select visemes based on the phonetic label of the audio, and enforces visual smoothness by matching the visual features of the last frame of one viseme to the first frame of the next, optimized using the Viterbi algorithm. The recent work of Suwanakorn et al. (2017) train a recurrent neural network to predict the coordinates of key facial landmarks for every frame given the audio, and fills the texture based on the landmarks using frame reselection. The paper proposes a series of post-processing steps like video re-timing and jaw smoothing to produce realistic images.
Taylor et al. (2017) also use a phonetic-based method – the audio is first transcribed into a phonetic sequence, from which the animation parameters are generated. The final image here is however generated by a CG animation model, rather than by frame reselection.

Also of relevance is the work of Garrido et al. (2015) which describes a method to transfer the mouth shapes from the video of the dubber to the face in the target video using a 3D model. However, this method requires the video footage of the dubber’s mouth saying the speech segment, whereas our method learns the relationship between the sound and the mouth shapes.

Natural image synthesis using CNNs. Visual speech synthesis is closely related to the problem of image synthesis, which has seen significant advances in recent years.

Generative adversarial networks (GANs) proposed by Goodfellow et al. (2014) have proven extremely effective in generating natural-looking images. A GAN has two modules, one network (typically a deconvolutional network) to generate an image from a latent variable, and another to discriminate if the image is real or fake. An extension to this model is Conditional GANs (Mirza and Osindero, 2014), which can generate images conditioned on auxiliary information, such as a class label.

Another successful approach is based on RNNs – in a method dubbed PixelRNN, van den Oord et al. (2016b) proposes training an LSTM to predict the value of the next pixel, given the previous pixel, starting from a corner. The method comes with a high computation cost as each state needs to be computed sequentially. The paper also introduces a CNN-based variant named PixelCNN, which reduces computational complexity by using standard convolutional layers to capture a bounded receptive field and computing features for all pixel positions at once. Conditional PixelCNN (van den Oord et al., 2016a) extends this architecture such that the model can be conditioned on any vector (e.g. descriptive labels or latent embeddings), which is
relevant to the work on talking face generation in this thesis.

The recent work of Chen and Koltun (2017) proposes Cascaded Refinement Network that generates realistic-looking images from pixel-wise semantic layout. They use a ‘content representation’ loss function that has been used previously in image style transfer works (Gatys et al., 2016) – the loss forces the network to match activations of a pre-trained CNN between the generated image and the ground truth, which demonstrates significant benefits over an image-space loss.

2.3 Conclusion

This chapter covered a selection of relevant literature on deep learning methods and their applications. We have observed an annual increase in performance in computer vision and speech recognition as new architectures and training regimes have been developed (Chan et al., 2015, Graves et al., 2006a, He et al., 2015, Hu et al., 2017, Krizhevsky et al., 2012, Simonyan and Zisserman, 2015, Szegedy et al., 2015), and have also witnessed deep learning methods being applied to new tasks such as synthesising natural images (Goodfellow et al., 2014). In this thesis, we build on these advances to develop new deep learning-based methods for recognising human communications.
Chapter 3

Building a large-scale audio-visual corpus

This chapter describes our multi-stage pipeline for automatically collecting and processing a large-scale audio-visual speech recognition dataset. We start from television programs from the BBC, since they contain all of the key ingredients to make the dataset – the audio of spoken sentences, the corresponding videos of the mouth motions, and the text in the closed caption (subtitles). Using the fully automated pipeline we have been able to extract thousands of hours of spoken text covering an extensive vocabulary of thousands of different words, with over 1 million word instances, and over a thousand different speakers. This corpus is used for a range of experiments throughout this thesis.

The key ideas are to: (i) obtain a temporal alignment of the spoken audio with a text transcription (broadcast as subtitles with the program). This in turn provides the time alignment between the visual face sequence and the words spoken; (ii) obtain a spatio-temporal alignment of the lower face for the frames corresponding to the word sequence; and, (iii) determine that the face is speaking the words (i.e. that the words are not being spoken by another person in the shot). The pipeline is summarised in Figure 3.2 and the individual stages are discussed in detail in the following sections.
3.1 Program selection

We require programs that have a changing set of talking heads, so choose news and current affairs, rather than dramas with a fixed cast. Table 3.1 lists the programs. There is a significant variation of format, viewpoint and content across the programs – from the regular news (e.g. BBC News, World News) where a single speaker is talking directly at the camera most of the time, to panel debates and talk shows (e.g. Question Time, The One Show) where the speakers might often shift their attention or look at each other, and so are seen in profile. There are a few people who appear repeatedly in the videos (e.g. news presenter or the host), but the large majority of participants change every episode as can be seen in Figure 3.1. This variety enables models trained on this corpus to generalise well across different viewpoints, speakers and domains.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Series name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBC 1 HD</td>
<td>News</td>
<td>Regular news</td>
</tr>
<tr>
<td>BBC 2 HD</td>
<td>World News</td>
<td>Regular news</td>
</tr>
<tr>
<td>BBC 1 HD</td>
<td>Breakfast</td>
<td>Regular news</td>
</tr>
<tr>
<td>BBC 1 HD</td>
<td>Newsnight</td>
<td>Current affairs debate</td>
</tr>
<tr>
<td>BBC 2 HD</td>
<td>Question Time</td>
<td>Current affairs debate</td>
</tr>
<tr>
<td>BBC 1 HD</td>
<td>The One Show</td>
<td>Magazine show</td>
</tr>
</tbody>
</table>

Table 3.1: List of programs that appear in our audio-visual corpus.
3.2 Audio processing

Text alignment. We require the alignment between the audio and the subtitle in order to get a timestamp for every word that is being spoken in the videos. The BBC transmits subtitles as bitmaps rather than text, therefore subtitle text is extracted from the broadcast video using standard OCR methods [Buehler et al., 2009, Everingham et al., 2006]. The subtitles are not time-aligned, and also not verbatim as they are generated live. The Penn Phonetics Lab Forced Aligner [Hermansky, 1990, Yuan and Liberman, 2008] (based on the open-source HTK toolbox [Woodland et al., 1995]) is used to force-align the subtitle to the audio signal. The aligner uses the Viterbi algorithm to compute the maximum likelihood alignment between the audio (modelled by PLP features [Rubin et al., 2013]) and the text. The audio is chunked at long pauses to increase efficiency. This method of obtaining the alignment has significant performance benefits over regular speech recognition methods that do not use prior knowledge of what is being said.
Text alignment verification. The alignment result, however, is not perfect for a number of reasons, including: (1) the method often misses words that are spoken too quickly; (2) the subtitles are not verbatim; (3) the acoustic model is only trained to recognise American English. The noisy labels are filtered by double-checking against the commercial IBM Watson Speech to Text service. For generating the training set in Chapters 5 and 6, we do not filter the labels using this method because this leads to the rejection of many correct alignments (the agreement between the IBM Watson transcript and the forced alignment is only around 45%, whereas the accuracy of forced alignment is over 90%), so we trade-off some quality for quantity in training.
3.3 Video processing

Shot boundary detection. The shot boundaries are determined to find the within-shot frames for which face tracking is to be run. This is done by comparing color histograms across consecutive frames [Lienhart, 2001].

Face detection and tracking. The CNN face detector based on the Single Shot MultiBox Detector (SSD) [Liu et al., 2016] is used to detect face appearances on every frame of the video (Figure 3.5 left). As with most face detection methods, this results in many false positives and some missed detections. In a similar manner to [Everingham et al., 2006], all face detections of the same person are grouped across frames using a KLT tracker [Tomasi and Kanade, 1992] (Figure 3.5 middle). If the track overlaps with face detections on the majority of frames, it is assumed to be correctly tracking the face.

Facial landmark detection. Facial landmarks are needed to determine the mouth position for cropping. The landmarks are determined in every frame of the face track using the method of Kazemi and Sullivan [2014b] (Figure 3.5 right).

Facial pose estimation. In order to facilitate the testing of multi-view models, we divide the data into five pose categories based on the yaw-rotation of the face: (1) left profile; (2) left three-quarter; (3) frontal; (4) right three-quarter; (5) right profile. This is done using a ResNet-based pose regressor, trained on the CASIA-
3.3. Video processing

WebFace dataset [Yi et al., 2014]. The network has been trained to classify cropped face images into one of the above five categories. Examples belonging to each class are given in Figure 3.6.

Active speaker verification. The final step of the data processing pipeline is to identify who is speaking in the videos. Here, we use the ConvNet-based active speaker detection method described in Chapter 4. The network estimates the correlation between the audio track and the mouth motion of the video. This method is also able
to reject the clips that contain dubbing or voice-over.

3.4 Statistics and conclusion

Using this pipeline we have been able to generate a large audio-visual corpus aligned with spoken text covering an extensive vocabulary and many different speakers. The statistics of the data are given in Table 3.2.

<table>
<thead>
<tr>
<th>Series name</th>
<th># vid.</th>
<th># words</th>
<th># facetracks</th>
<th>Total duration</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>News</td>
<td>1,712</td>
<td>3.20M</td>
<td>70K</td>
<td>3.17M</td>
<td>33%</td>
</tr>
<tr>
<td>World News</td>
<td>361</td>
<td>0.57M</td>
<td>12K</td>
<td>0.65M</td>
<td>31%</td>
</tr>
<tr>
<td>Breakfast</td>
<td>308</td>
<td>3.45M</td>
<td>80K</td>
<td>3.41M</td>
<td>32%</td>
</tr>
<tr>
<td>Newsnight</td>
<td>605</td>
<td>2.16M</td>
<td>44K</td>
<td>1.68M</td>
<td>43%</td>
</tr>
<tr>
<td>Question Time</td>
<td>195</td>
<td>1.03M</td>
<td>35K</td>
<td>0.70M</td>
<td>47%</td>
</tr>
<tr>
<td>The One Show</td>
<td>259</td>
<td>0.25M</td>
<td>11K</td>
<td>0.54M</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>3,440</td>
<td>10.7M</td>
<td>253K</td>
<td>10.2M</td>
<td>34%</td>
</tr>
</tbody>
</table>

Table 3.2: Statistics of the processed corpus. The duration is in seconds. The yield is the proportion of useful face appearance relative to the total length of video. A useful face appearance is one that appears continuously for at least 5 seconds, with the face being that of the speaker.

This corpus is used for a range of experiments in this thesis – in Chapter 4 for audio-to-video synchronisation, Chapters 5 and 6 for lip reading, and Chapter 7 for visual speech synthesis. Moreover, the methods developed in this chapter forms the basis for the speaker recognition pipeline introduced in Chapter 9.
Chapter 4

Learning a synchronization network for lip motion and audio

Audio to video synchronisation (or lack of it) is a common problem in TV broadcasting. In television, a lip-sync error of up to several hundred milliseconds is not uncommon. The video usually lags the audio if the cause of the error is in the transmission. These errors are often noticeable – the threshold for detectability by an average viewer is around -125 ms (the audio lags the video) to +45 ms (the audio leads the video) ([Peregudov et al., 2005]).

In film production, audio to video synchronisation is a routine task, as the audio and the video are typically recorded using different equipment. Consequently, many solutions have been developed in this industry, the clapperboard being the most traditional one. Modern solutions use timecodes or sometimes time warping between the audio from the camera’s built-in microphone and the external microphone, but it is not common to use the visual content as a guide to alignment.

Our objective in this chapter is to develop a language independent and speaker independent solution to the lip-sync problem, using only the video and the audio streams that are available to the TV viewer. The key contributions are the ConvNet architecture, and the data processing pipeline that enables a joint embedding between the sound and the mouth shapes to be learnt discriminatively from unlabelled videos, us-
4.1. The SyncNet model

This section describes both the representations and network architectures for both the audio and the video inputs. The network ingests 0.2-second clips of each data type. In the dataset (Section 4.2), no explicit annotation (e.g. phonemes labels, or the precise time offset) is given for the audio-video data, however we make the assumption that in television broadcasts, the audio and the video are usually synced in single-speaker videos with a front-facing speaker.

The network consists of two asymmetric streams for audio and video, each of which is described below.

4.1.1 Audio stream

The input audio data are MFCC values. This is a representation of the short-term power spectrum of a sound on a non-linear mel scale of frequency. 13 mel frequency bands are used at each time step. The features are computed at a sampling rate of 100 Hz, giving 20 time steps for a 0.2-second input signal.
4.1. The SyncNet model

Figure 4.1: **Input representations. Left:** temporal representations as heatmaps for audio. The 13 rows (A to M) in the audio image encode each of the 13 MFCC features representing powers at different frequency bins from 0 Hz to 8 KHz. **Right:** Grayscale images of the mouth area.

Representation. The audio is encoded as a heatmap image representing MFCC values for each time step and each mel frequency band (see Figure 4.1). Previous work (Geras et al., 2015) has also attempted to train image-style ConvNet for similar inputs.

Architecture. We use a convolutional neural network inspired by those designed for image recognition. Our layer architecture (Figure 4.2) is based on VGG-M (Chatfield et al., 2014), but with modified filter sizes to ingest the inputs of unusual dimensions. VGG-M takes a square image of size 224×224 pixels, whereas our input size is 20 pixels (the number of time steps) in the time-direction, and only 13 pixels in the other direction (so the input image is 13 × 20 pixels).

4.1.2 Visual stream

Representation. The input format to the visual network is a sequence of mouth regions as grayscale images, as shown in Figure 4.1. The input dimensions are 111×111×5 (W×H×T) for 5 frames, which corresponds to 0.2-seconds at the 25 Hz frame rate.

Architecture. The visual stream is also based on the VGG-M model, but the conv1 filter has been modified to ingest the 5-channel input instead of 1. This architecture
is closely related to the Early Fusion model in Chapter 5, which is compact and fast to train.

![Two-stream ConvNet architecture](image)

Figure 4.2: Two-stream ConvNet architecture. Both streams are trained simultaneously.

4.1.3 Loss function

The training objective is that the output of the audio and the video networks are similar for positive pairs, and different for negative pairs. Specifically, the Euclidean distance between the network outputs is minimised or maximised. We propose to use the contrastive loss (Equation 4.1), originally proposed for training Siamese networks (Chopra et al., 2005). \(v \) and \(a \) are \(fc_7 \) vectors for the video and the audio streams, respectively. \(y \in [0, 1] \) is the binary similarity metric between the audio and the video inputs.

\[
E = \frac{1}{2N} \sum_{n=1}^{N} (y_n) d_n^2 + (1 - y_n) \max (\text{margin} - d_n, 0)^2 \tag{4.1}
\]

\[
d_n = ||v_n - a_n||_2 \tag{4.2}
\]

An alternative considered was to approach the problem as one of classification (on-sync/ off-sync, or into different offset bins using synthetic data), however we were
4.1. The SyncNet model

unable to achieve convergence.

4.1.4 Training

The training procedure is an adaptation of the usual procedure for a single-stream ConvNet [Krizhevsky et al., 2012; Simonyan and Zisserman, 2015] and inspired by (Chopra et al., 2005; Simonyan and Zisserman, 2014). However our network is different in that it consists of non-identical streams, two independent sets of parameters and inputs from two different domains. The network weights are learnt using stochastic gradient descent with momentum. The parameters for both streams of the network are learnt simultaneously.

Data augmentation. Applying data augmentation often improves validation performance and reduces overfitting in ConvNet image classification tasks [Krizhevsky et al., 2012]. For the audio, the amplitude is randomly altered in the range of ±10%. We do not make changes to the audio playback speed, as this could affect the important timing information. For negative examples only, we take random crops in time. For the video, we apply the standard augmentation methods used on the ImageNet classification task by [Krizhevsky et al., 2012; Simonyan and Zisserman, 2015] (e.g. random cropping, flipping, colour shift). A single transformation is applied to all video frames in a single clip.

Details. Our implementation is based on the MATLAB toolbox MatConvNet [Vedaldi et al., 2014]. The network is trained with batch normalisation [Ioffe and Szegedy, 2015]. A learning rate of 10^{-2} to 10^{-4} is used, which is slower than that typically used for training a ConvNet with batch normalisation. The training was stopped after 20 epochs, or when the validation error did not improve for 3 epochs, whichever was sooner.
4.2 Dataset

Figure 4.3: Still images of BBC News videos.

In this section, we describe the strategy to automatically generate data samples for training the lip synchronisation system.

We start from a subset of the audio-visual data described in Chapter 3 before the active speaker detection stage of the pipeline. The training, validation and test sets are divided in time, and the dates of videos corresponding to each set are shown in Table 4.1.

<table>
<thead>
<tr>
<th>Set</th>
<th>Dates</th>
<th># pairs</th>
<th># hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>01/07/2013 - 31/08/2015</td>
<td>3.70M</td>
<td>606</td>
</tr>
<tr>
<td>Val</td>
<td>01/09/2015 - 31/12/2015</td>
<td>0.31M</td>
<td>42</td>
</tr>
<tr>
<td>Test</td>
<td>01/01/2016 - 31/05/2016</td>
<td>0.35M</td>
<td>47</td>
</tr>
</tbody>
</table>

Table 4.1: Dataset statistics: recording dates, and number of lip-synched audio-video training pairs, number of hours of facetrack.

4.2.1 Sampling strategy

The training strategy relies on two initial assumptions: (i) the audio and the video streams in the majority of broadcast TV videos are in-sync; (ii) most of the front-facing faces in the single-person scenes are speaking.

Positive audio-video pairs are generated by taking a 5-frame video clip and the corresponding audio clip. Only the audio is randomly shifted by up to 2 seconds in order to generate synthetic negative audio-video pairs. This is illustrated in Figure 4.4. For
4.3 Extending the model to profile views

the negative examples, We take the audio from the same clip, so that the network learns to recognise the alignment, rather than the correlation between the face and the voice.

Refining the training data. The training data generated using the proposed method is noisy in that it contains videos in which the voice and the mouth shapes do not correlate (e.g. dubbed videos) or are off-sync.

To overcome this problem, we train the network using the following strategy:

Stage 1: Train the network using this ‘noisy’ data.

Stage 2: Reject the false positives in the training set by rejecting positive pairs with a distance over a threshold.

Stage 3: Re-train the network on the remainder of the data.

4.3 Extending the model to profile views

In this section, we extend SyncNet from the frontal to the profile faces, using a curriculum learning strategy described in Section 4.3.1.
4.3. Extending the model to profile views

4.3.1 Curriculum learning

The training of the frontal-only SyncNet used the assumption that the majority of faces in the dataset are speaking. Whilst this may be the case for the news programmes it was trained on (Figure 4.5 left), this assumption cannot be used to bootstrap the multi-view model as there would be too much noise (in the form of non-speaking faces) for the network to learn the salient information. For example in a scene such as Figure 4.5 right, only one of these faces would be speaking at any one point. To circumvent this problem, we start with the frontal SyncNet trained on the news programmes, and adopt a curriculum learning approach (Figure 4.6) that gradually increases the working angle of the active speaker detection system.

![Figure 4.5: Left: Still image from ‘BBC News’; Right: Still image from ‘The One Show’.](image)

Stage 1. Frontal view. The first stage is to train the synchronisation network for the frontal faces (view 3 from Section 3.3) as described in Sections 4.1 and 4.2.

Stage 2. Three-quarter view. The network trained in Stage 1 is used to determine the active speaker on the three-quarter view (views 2 and 4) face tracks. The speaking tracks from these views are added to the training data; and the synchronisation network is re-trained.

Stage 3. Profile view. As before, the network in Stage 2 is used to perform speaker detection on the profile view (views 1 and 5) tracks. The speaking tracks are added to the training data and the network is re-trained.
4.4 Experiments

In this section we use the trained network to determine the lip-sync error in videos. The 256-dimensional fc_7 vectors for each stream are used as features representing the audio and the video. To obtain a (dis)similarity metric between the signals, the Euclidean distance between the features is taken. This is the same distance function that is used at training time (Equation 4.2). The histogram (Figure 4.7) shows the distribution of the metric.

![Figure 4.6: Curriculum learning strategy. ASD: Active Speaker Detection.](image)

Figure 4.7: The distribution of Euclidean distances for positive and negative audio-video pairs, using a single 0.2-second sample. Note that this is on the noisy validation data that may include clips of non-speakers or dubbed videos.

Evaluation. We report Equal Error Rates on the labelled validation set in Table 4.2. The data is in the same format as used in training – the correct audio-video pairs for
positives, and artificially shifted audio for negatives.

<table>
<thead>
<tr>
<th>View</th>
<th>Multi-view model</th>
<th>Frontal model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>13.6%</td>
<td>13.2%</td>
</tr>
<tr>
<td>Three-quarter</td>
<td>14.8%</td>
<td>17.1%</td>
</tr>
<tr>
<td>Profile</td>
<td>16.2%</td>
<td>21.7%</td>
</tr>
</tbody>
</table>

Table 4.2: **Equal Error Rates** (synched/ not synched) on the validation set, using **single 0.2 second samples**. Note that not every sample in the validation set contains discriminative information.

4.4.1 Determining the lip-sync error

To find the time offset between the audio and the video, we take a sliding-window approach. For each sample, the distance is computed between one 5-frame video feature and all audio features in the ± 1 second range. The correct offset is when this distance is at a minimum. Typical response plots are shown in Figure 4.9.

Since not every sample in a clip contain discriminative information (e.g. the person might be taking a breath at a particular moment), multiple samples are taken for each clip, and then averaged. Averaged over a 100-frame window, the method shows over 99% accuracy.

Experiments were also performed on a sample of foreign language videos (Figure 4.8), to show that our method works across different languages, and have found the qualitative results to be very strong.

Figure 4.8: Images of foreign language videos that were used for testing.
4.4. Experiments

Figure 4.9: Mean distance between the audio and the video features for different offset values, averaged over a clip. The actual offset lies at the trough. The three example clips shown here are for different scenarios. **Left:** synchronised AV data; **Middle:** the audio leads the video; **Right:** the audio and the video are uncorrelated.

4.4.2 Application: active speaker detection

The problems of AV synchronisation and active speaker detection are closely related in that the correspondence between the video and the accompanying audio must be established. Therefore, the synchronisation method can be extended to determine the speaker in a scene where multiple faces are present. We define the confidence score of a time offset (synchronisation error) as the difference between the minimum and the median of the Euclidean distances (e.g. this value is around 6 to 7 for both plots in Figure 4.9). In a multi-subject scene, the speaker’s face is naturally the one with the highest correspondence between the audio and the video. A non-speaker should have a correlation close to zero and therefore also a very low score.

Unlike the uni-modal methods for active speaker detection that rely on the lip motion only, our method also can detect cases where the person is speaking, but is uncorrelated to the audio (e.g. in dubbed videos).

Evaluation. We test our method using the dataset (Figure 4.10) and the evaluation protocol of Chakravarty and Tuytelaars (2016). The objective is to determine who the speaker is in a multi-subject scene.
The dataset contains 6 speakers, of which 5 (Bell, Bollinger, Lieberman, Long, Sick) are used for testing. A score threshold is set using the annotations on the remaining speaker (Abbas), at the point where the ROC curve intersects the diagonal (the equal error rate).

We report the F_1-scores in Table 4.3. The scores for each test sample are averaged over a 10-frame or 100-frame window. The performance is almost perfect for the 100-frame window. The disadvantage of increasing the size of the averaging window is that the method cannot detect examples in which the person speaks for a very short period; though that is not a problem in this case.

<table>
<thead>
<tr>
<th>Method</th>
<th>Existing a</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Bell</td>
<td>82.9%</td>
<td>90.3%</td>
</tr>
<tr>
<td>Bollinger</td>
<td>65.8%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Lieberman</td>
<td>73.6%</td>
<td>82.4%</td>
</tr>
<tr>
<td>Long</td>
<td>86.9%</td>
<td>96.0%</td>
</tr>
<tr>
<td>Sick</td>
<td>81.8%</td>
<td>89.3%</td>
</tr>
</tbody>
</table>

Table 4.3: F_1-scores on the Columbia speaker detection dataset. a Chakravarty and Tuytelaars (2016): the results have been digitised from Figure 3b of their paper, and are accurate to around ±0.5%.

4.5 Conclusion

Using this method, we are able to train a two-stream network that learns an embedding of the audio and the lip motion, and provides a robust method of correcting the
lip-sync error, and determining the active speaker in multi-speaker scenes.

The method does not require annotation of the training data, unlike some previous works that are based on phoneme recognition. We train on audio-video pairs, and the advantage of this approach is that the amount of available data is virtually infinite, and the cost of obtaining it is minimal (almost any video of speech downloaded from the Internet can be used for training).

The key assumption is that the majority of the videos that we download are approximately synced, although some videos may have lip-sync errors. ConvNet loss functions and training are generally tolerant to the data being somewhat noisy.

As shown in Chapter 5, the visual stream of this network generates excellent features for the task of lip reading – on the LRW and OuluVS2 (Anina et al., 2015a) datasets, single-layer classifiers trained on the SyncNet features have outperformed networks trained end-to-end on the task. This is presumably because the SyncNet is trained on an extremely large amount of audio-visual data, whereas this is not feasible for lip reading.
Chapter 5

Deep learning for word-level lip reading

Lip-reading, the ability to understand speech using only visual information, is a very attractive skill. It has clear applications in speech transcription for cases where audio is not available, such as for archival silent films or (less ethically) off-mike exchanges between politicians and celebrities (the visual equivalent of open-mike mistakes). It is also complementary to the audio understanding of speech, and indeed can adversely affect perception if audio and lip motion are not consistent as evidenced by the McGurk effect (McGurk and MacDonald, 1976). For such reasons, lip-reading has been the subject of a vast research effort over the last few decades. It has also been the subject of comedy sketches, e.g. Seinfeld “The Lip Reader”, and its ambiguity and challenge can be exploited to replace/overdub actual speech, e.g. in the YouTube channel “Bad Lip Reading”.

Our objective in this chapter is a scalable approach to large lexicon speaker independent lip-reading. Furthermore, we aim to recognize words from continuous speech, where words are not segmented, and there may be co-articulation of the lips from preceding and subsequent words.

Apart from the problem of homophones (described in Chapter 1.4), lip-reading is a challenging problem in any case due to intra-class variations (such as accents, speed
of speaking, mumbling), and adversarial imaging conditions (such as poor lighting, strong shadows, motion, resolution, foreshortening, etc.).

The usual approach to inference for temporal sequences is to employ sequence models such as Hidden Markov Models or Recurrent Neural Networks (e.g. LSTMs). For lip-reading such models can be employed for predicting individual characters or phonemes. In contrast, we investigate using Convolutional Neural Networks (CNNs) for directly recognizing individual words from a sequence of lip movements.

Clearly, visual registration is an important element to consider in the design of the networks. Typically, the imaged head will move in the video, either due to actual movement of the head or due to camera motion. One approach would be to tightly register the mouth region (including lips, teeth and tongue, that all contribute to word recognition), but another is to develop networks that are tolerant to some degree of motion jitter. We take the latter approach, and do not enforce tight registration.

In this chapter, we develop CNN architectures for classifying multi-frame time series of lips. In particular we propose and compare different input and temporal fusion architectures, and discuss their pros and cons (Section 5.1). We analyse the performance and ambiguity of the resulting classifications in Section 5.3.

As discussed in the related work below, in these three aspects: speaker independence, learning from continuous speech, and lexicon (vocabulary) size, we go far beyond the current state of the art. We also exceed the state of the art in terms of performance, as is also shown in Section 5.3 by comparisons on the standard OuluVS benchmark dataset (Anina et al. 2015b).
5.1 Models

The task for the network is to predict which words are being spoken, given a video of a talking face. The input format to the network is a sequence of mouth regions, as shown in Figure 5.3. Previous attempts at visual speech recognition have relied on very precise localisation of the facial landmarks (the mouth in particular); our aim is learn from more noisy data, and tolerate some localisation irregularities both in position and in time.

5.1.1 Architectures

We cast the problem as one of multi-way classification, and so base our architecture on ones designed for image classification (Chatfield et al., 2014; Krizhevsky et al., 2012; Simonyan and Zisserman, 2015). In particular, we build on the VGG-M model (Chatfield et al., 2014) since this has a good classification performance, but is much faster to train and experiment on than deeper models, such as VGG-16 (Simonyan and Zisserman, 2015). We develop and compare models that differ principally in how they ‘ingest’ the T input frames (where here T= 25 for a 1 second interval). These variations take inspiration from previous work on human action classification (Ji et al., 2013; Karpathy et al., 2014; Ng et al., 2015; Tran et al., 2015). Apart from these differences, the architectures share the configuration of VGG-M, and this allows us to directly compare the performance across different input designs.

We next describe the three architectures, summarized in Figure 5.1, followed by a discussion of their differences. Their performance is compared in Section 5.3.

Early Fusion (EF). The network ingests a 25-channel image, where each of the channels encode an individual frame in *greyscale*. The layer structure for the subsequent layers is identical to that of the regular VGG-M network. This method is related to the Early Fusion model in (Karpathy et al., 2014), which takes *colour* im-
ages and uses a $T \times 3$-channel convolutional filter at conv1. We did experiment with 25×3-channel colour input, but found that the increased number of parameters at conv1 made training difficult due to overfitting (resulting in validation performance that is around 5% weaker; not quoted in Section 5.3).

Multiple Towers (MT). There are $T = 25$ towers with common conv1 layers (with shared weights), each of which takes one input frame. The activations from the towers are concatenated channel-wise after pool1, producing an output activation with 1200 channels. The subsequent 1×1 convolution is performed to reduce this dimension, to keep the number of parameters at conv2 at a manageable level. The rest of the
network is the same as the regular VGG-M.

Long Short-Term Memory (LSTM). Here, each convolutional tower shares the configurations of SyncNet’s (Chapter 4) visual stream, which is related to the EF architecture. The two-layer LSTM ingests the visual features (fc6 activations) of the 5-frame sliding window, moving 1-frame at a time, and returns the classification result at the end of the sequence.

Discussion. The early fusion architecture EF shares similarities with previous work on human action recognition using CNNs (Ji et al., 2013, Karpathy et al., 2014, Ng et al., 2015) in the way that they assume registration between frames. The models perform time-domain operations beginning from the first layer to precisely capture local motion direction and speed (Karpathy et al., 2014). For these methods to capture useful information, good registration of details between frames is critical. However, we are not imposing strict registration, and in any case it goes slightly against the signal (lip motion and mouth region deformation) that we are trying to capture.

In contrast, the MT model delays all time-domain registrations (and operations) until after the first set of convolutional and pooling layers. This gives tolerance against minor registration errors (the receptive field size at conv2 is 11 pixels). Note, the common conv1 layers of the multiple towers ensures that the same filter weights are used for all frames, whereas in the early fusion architecture EF it is possible to learn different weights for each frame. The experimental results show that the registration-tolerant model gives a modest improvement over their counterparts, and the performance improvement is likely to be more significant where the tracking quality is less ideal.

Likewise, the LSTM delays all time-domain operations until after all of the convolutional layers, except within the 5 neighbouring frames, between which the movement would be negligible. In addition to registration-tolerance, this model benefits from
the ability to accept sequences of variable lengths, unlike the EF and MT models.

One other design choice is the size of the input images. This was chosen as 111×111 pixels, which is smaller than that typically used in image classification networks. The reason is that the size of the cropped mouth images are rarely larger than 111×111 pixels, and this smaller choice means that smaller filters can be used at conv1 (than those used in VGG-M and ResNet-50) without sacrificing receptive fields, but at a gain in avoiding unnecessary parameters being learnt.

5.1.2 Training

Data augmentation. Data augmentation often helps to improve validation performance by reducing overfitting in CNN image classification tasks (Krizhevsky et al., 2012). We apply the augmentation techniques used on the ImageNet classification task by (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015) (e.g. random cropping, flipping, colour shift), with a consistent transformation applied to all frames of a single clip. To further augment the training data, we make random shifts in time by up to 0.2 seconds, which improves the top-1 validation error by 3.5% compared to the standard ImageNet augmentation methods. It was not feasible to scale in the time-domain as this results in artifacts being shown due to the relatively low video refresh rate of 25fps.

Details. Our implementation is based on the MATLAB toolbox MatConvNet (Vedaldi et al., 2014) and Caffe (Jia, 2013). The network is trained using SGD with momentum 0.9 and batch normalisation (Ioffe and Szegedy, 2015), but without dropout. The training was stopped after 20 epochs, or when the validation error did not improve for 3 epochs, whichever is sooner. The learning rate of 10^{-2} to 10^{-4} was used, decreasing on log scale.
5.2 Dataset

The 500-word LRW dataset is generated from the audio-visual corpus described in Chapter 3.

The training, validation and test sets are disjoint in time. The dates of videos corresponding to each set is shown in Table 5.2. Note that we leave a week’s gap between the test set and the rest in case any news footage is repeated. The lexicon is obtained by selecting the 500 most frequently occurring words between 5 and 10 characters in length (Figure 5.2 gives the word duration statistics). The full list of words is given in

Table 5.1: List of words in Lip Reading in the Wild (LRW) dataset.

| ABOUT | ACTION ACTUALLY AGAIN ALLOWED AMOUNT ARRESTED BECOMING BETTER BING BUSINESS BUSINESS CAPITAL CASES CHANGES CLEAN CLEANED COACHES CONTROL CONTROLLED COULD COURSE CRIME CRIME CRIME CRISIS CURRENCY DIFFERENT DIFFICULT EDITOR EVERYTHING EVERYONE EVERYTHING EVERYTH
Table 5.1: This word length is chosen such that the speech duration does not exceed the fixed one-second bracket that is used in the recognition architecture (Figure 5.2), whilst shorter words are not included because there are too many ambiguities due to homophemes (e.g. ‘bad’, ‘bat’, ‘pat’, ‘mat’, etc. are all visually identical), and sentence-level context would be needed to disambiguate these.

<table>
<thead>
<tr>
<th>Set</th>
<th>Dates</th>
<th># class</th>
<th>#/class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>01/01/2010 - 28/02/2015</td>
<td>500</td>
<td>800+</td>
</tr>
<tr>
<td>Val</td>
<td>01/03/2015 - 25/07/2015</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Test</td>
<td>01/08/2015 - 31/03/2016</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 5.2: Dataset statistics.

These 500 words occur at least 800 times in the training set, and at least 40 times in each of the validation and test sets. For each of the occurrences, the one-second clip is taken, and the face is cropped with the mouth centred. The words are not isolated, as is the case in other lip-reading datasets; as a result, there may be co-articulation of the lips from preceding and subsequent words. The test set is manually checked for errors.

Figure 5.2: Word statistics. Regardless of the actual duration of the word, we take a 1-second clip for training and test.

Figure 5.3: The mouth motions for ‘afternoon’ from two different speakers. The network sees the areas inside the red squares.
5.3 Experiments

In this section we evaluate and compare the several proposed architectures, and discuss the challenges arising from the visual ambiguities between words. We then compare to the state of the art on a public benchmark.

5.3.1 Comparison of architectures

Evaluation protocol. The models are evaluated on the independent test set (Section 5.2). We report top-1 and top-10 accuracies, as well as recall against rank curves. Here, the ‘Recall@K’ is the proportion of times that the correct class is found in the top-K predictions for the word. We also report the character-level edit distance (Kondrak, 2000), which is the minimum number of character-level operations required to convert the predicted string to the ground truth. This edit distance (metric) is smaller where the predicted string is similar to the ground truth (e.g. ‘concerned’ and ‘concerns’ have an edit distance of 2) and larger penalties where the words are very different (e.g. ‘concerned’ and ‘company’ have an edit distance of 6).

Results. The results are shown in Table 5.3 and Figure 5.4. The top-10 accuracy for the best model is over 95%, despite the relatively modest top-1 figure of around 70%. This is a result of ambiguities in lip reading, which we will discuss next.

<table>
<thead>
<tr>
<th></th>
<th>Top-1</th>
<th>Top-10</th>
<th>ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>57.0%</td>
<td>88.8%</td>
<td>2.32</td>
</tr>
<tr>
<td>MT</td>
<td>61.1%</td>
<td>90.4%</td>
<td>2.06</td>
</tr>
<tr>
<td>LSTM</td>
<td>66.0%</td>
<td>94.3%</td>
<td>1.73</td>
</tr>
</tbody>
</table>

Table 5.3: Word classification accuracy on the LRW dataset for the different architectures. **ED**: Edit Distance.
5.3. Experiments

![Recall vs Rank curves for the word classification.](image)

Table 5.4: Most frequently confused word pairs. The numbers refer to class confusions.

<table>
<thead>
<tr>
<th>BENEFITS</th>
<th>BENEFIT</th>
<th>0.24</th>
<th>HAPPEN</th>
<th>HAPPENED</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUESTIONS</td>
<td>QUESTION</td>
<td>0.24</td>
<td>FORCE</td>
<td>FORCES</td>
</tr>
<tr>
<td>REPORT</td>
<td>REPORTS</td>
<td>0.23</td>
<td>HAPPENED</td>
<td>HAPPEN</td>
</tr>
<tr>
<td>BORDER</td>
<td>IMPORTANT</td>
<td>0.23</td>
<td>SERIOUS</td>
<td>SERIES</td>
</tr>
<tr>
<td>AMERICA</td>
<td>AMERICAN</td>
<td>0.23</td>
<td>TROOPS</td>
<td>GROUPS</td>
</tr>
<tr>
<td>GROUND</td>
<td>AROUND</td>
<td>0.22</td>
<td>QUESTION</td>
<td>QUESTIONS</td>
</tr>
<tr>
<td>RUSSIAN</td>
<td>RUSSIA</td>
<td>0.21</td>
<td>PROBLEM</td>
<td>PROBABLY</td>
</tr>
<tr>
<td>FIGHT</td>
<td>FIGHTING</td>
<td>0.21</td>
<td>WANTED</td>
<td>WANTS</td>
</tr>
<tr>
<td>FAMILY</td>
<td>FAMILIES</td>
<td>0.21</td>
<td>RUSSIA</td>
<td>RUSSIAN</td>
</tr>
<tr>
<td>AMERICAN</td>
<td>AMERICA</td>
<td>0.20</td>
<td>TAKEN</td>
<td>TAKING</td>
</tr>
<tr>
<td>BENEFIT</td>
<td>BENEFITS</td>
<td>0.20</td>
<td>PROBLEM</td>
<td>PROBLEMS</td>
</tr>
<tr>
<td>ELECTIONS</td>
<td>ELECTION</td>
<td>0.20</td>
<td>MISSING</td>
<td>MEETING</td>
</tr>
<tr>
<td>WANTS</td>
<td>WANTED</td>
<td>0.20</td>
<td>PARTIES</td>
<td>PARTY</td>
</tr>
</tbody>
</table>

Table 5.4: Most frequently confused word pairs. The numbers refer to class confusions.

5.3.2 Analysis of confusions

Here, we examine the classification results, in particular, the scenarios in which the network fails to correctly classify the spoken word. Table 5.4 shows the most common confusions between words in the test set. This is generated by taking the largest off-diagonal values in the word confusion matrix. This result confirms our prior knowledge about the challenges in visual speech recognition – almost all of the top confusions are either (i) a plural of the original word (e.g. ‘report’ and ‘reports’) which is ambiguous because one word is a subset of the other, and the words are not isolated in our dataset
so this can be due to co-articulation; or (ii) a known homopheme visual ambiguity where the words cannot be distinguished using visual information alone (e.g. ‘billion’ and ‘million’, ‘worse’ and ‘worst’). Such errors are phonetically understandable. For example, some of the most common confusions, e.g. ‘groups’ which is phonetically (\texttt{G R U W P S}) and ‘troops’ (\texttt{T R U W P S}), ‘ground’ (\texttt{G R A W N D}) and ‘around’ (\texttt{E R A W N D}), actually share most of the phonemes.

Apart from these difficulties, the failure cases are typically for extreme samples. For example, due to strong international accents, or poor quality/low bandwidth location reports and Skype interviews, where there are motion compression artifacts or frames dropped from the transmission.

5.3.3 Comparison to state of the art

It is worth noting that the top-1 classification accuracy of 66%, shown in Table 5.3, is comparable to that of many of the recent works (Fu et al., 2008, Ngiam et al., 2011, Petridis and Pantic, 2016) performed on lexicon sizes that are orders of magnitude smaller.

![Figure 5.5: Original video frames for 'hello' on OuluVS. Compare this to the our original input frames in Figure 3.4.](image)

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhou et al. (2014a)</td>
<td>73.5%</td>
</tr>
<tr>
<td>Saitoh et al. (2016)</td>
<td>85.6%</td>
</tr>
<tr>
<td>MT</td>
<td>93.2%</td>
</tr>
<tr>
<td>LSTM</td>
<td>94.1%</td>
</tr>
</tbody>
</table>

Table 5.5: Word classification accuracy on OuluVS2 (short phrases, frontal view). Note that MT and LSTM models have been pre-trained on the LRW dataset.

OuluVS2. We evaluate our method on the frontal-view subset of OuluVS2 dataset.
The dataset consists of 52 subjects uttering 10 phrases (e.g. ‘thank you’, ‘hello’, etc.), and has been widely used in previous works. Here, we assess on a speaker-independent experiment, where some of the subjects are reserved for testing.

To apply our method on this dataset, we pre-train the convolutional layers on the LRW dataset, and re-train the fully-connected and/or LSTM layers from scratch. Training from scratch on OuluVS2 underperforms as the size of this dataset is insufficient to train a deep network. For EF and MT models, we simply repeat the first and the last frames to fill the 1-second clip if the phrase is shorter than 25 frames. If the clip is longer, we take a random crop.

As can be seen in Table 5.5 the method achieves a strong performance, and sets the new state-of-the-art. Note that, without retraining the convolutional part of the network, we achieve these strong results on videos that are very different to ours in terms of lighting, background, camera perspective, etc. (Figure 5.5), which shows that the model generalises well across different formats.

5.4 Conclusion

We have shown that CNN and LSTM architectures can be used to classify temporal lip motion sequences of words with excellent results. We also demonstrated a recognition performance that exceeds the state of the art on a standard public benchmark dataset, OuluVS2. The next step is to extend this work to lip reading full sentences.
Chapter 6

Deep learning for sentence-level lip reading and multi-modal speech recognition

Lip reading is inherently ambiguous at the word level due to homophones – different characters that produce exactly the same lip sequence (e.g. ‘p’ and ‘b’). However, such ambiguities can be resolved to an extent using the context of neighbouring words in a sentence.

In this chapter we go beyond the word-level recognition work of Chapter 5 and explore deep learning methods that can lip read natural sentences from ‘in the wild’ videos.

A machine that can lip read opens up a host of applications: ‘dictating’ instructions or messages to a phone in a noisy environment; transcribing and re-dubbing archival silent films; resolving multi-talker simultaneous speech; and, improving the performance of automated speech recognition in general.

In this case the model is based on the recent sequence-to-sequence (encoder-decoder with attention) translation architectures that have been developed for speech recognition and machine translation (Section 2.1.3).

We also investigate how lip reading can contribute to audio based speech recognition.
6.1. The Watch, Listen, Attend and Spell model

There is a large literature on this contribution, particularly in noisy environments, as well as the converse where some derived measure of audio can contribute to lip reading for the deaf or hard of hearing. To investigate this aspect we train a model to recognize characters from both audio and visual input, and then systematically disturb the audio channel or remove the visual channel.

Our model (Section 6.1) outputs at the character level, is able to learn a language model, and has a novel dual attention mechanism that can operate over visual input only, audio input only, or both. We show (Section 6.2) that training can be accelerated by a form of curriculum learning. We also describe (Section 6.3) the generation and statistics of a new large scale Lip Reading Sentences (LRS) dataset, based on the audio-visual corpus of Chapter 3 containing talking faces together with subtitles of what is said. The broadcasts contain faces ‘in the wild’ with a significant variety of pose, expressions, lighting, backgrounds, and ethnic origin.

The performance of the model is assessed on a test set of the LRS dataset, as well as on public benchmarks datasets for lip reading including LRW (Chapter 5) and GRID (Cooke et al., 2006). We demonstrate open world (unconstrained sentences) lip reading on the LRS dataset, and in all cases on public benchmarks the performance exceeds that of prior work.

6.1 The Watch, Listen, Attend and Spell model

In this section, we describe the Watch, Listen, Attend and Spell network that learns to predict characters in sentences being spoken from a video of a talking face, with or without audio.

We model each character y_i in the output character sequence $y = (y_1, y_2, ..., y_l)$ as a conditional distribution of the previous characters $y_{<i}$, the input image sequence $x^v = (x^v_1, x^v_2, ..., x^v_n)$ for lip reading, and the input audio sequence $x^a = (x^a_1, x^a_2, ..., x^a_m)$.
Hence, we model the output probability distribution as:

\[
P(y|x^v, x^a) = \prod_i P(y_i|x^v, x^a, y_{<i})
\] \hspace{1cm} (6.1)
6.1. The Watch, Listen, Attend and Spell model

\[
\begin{align*}
 s^v, o^v &= \text{Watch}(x^v) \\
 s^a, o^a &= \text{Listen}(x^a) \\
 P(y|x^v, x^a) &= \text{Spell}(s^v, s^a, o^v, o^a)
\end{align*}
\]

The three modules in the model are trained jointly. We describe the modules next, with implementation details given in Section 6.2.5.

6.1.1 Watch: Image encoder

The image encoder consists of the convolutional module that generates image features \(f^v_i \) for every input timestep \(x^v_i \), and the recurrent module that produces the fixed-dimensional state vector \(s^v \), the hidden vector \(h^v_i \) and a set of output vectors \(o^v_i \).

\[
\begin{align*}
 f^v_i &= \text{CNN}(x^v_i) \\
 h^v_i, o^v_i &= \text{LSTM}(f^v_i, h^v_{i+1}) \\
 s^v &= h^v_1
\end{align*}
\]

The convolutional network is based on the VGG-M model (Chatfield et al., 2014), as it is memory-efficient, fast to train and has a decent classification performance on ImageNet (Russakovsky et al., 2015). The ConvNet layer configuration is shown in Table 6.1 and Figure 6.2. The convolutional layers are abbreviated as \(conv1 \cdots fc6 \) in the main network diagram.

The encoder LSTM network consumes the output features \(f^v_i \) produced by the ConvNet at every input timestep, and generates a fixed-dimensional state vector \(s^v \). In addition, it produces an output vector \(o^v_i \) at every timestep \(i \). Note that the network
6.1. The Watch, Listen, Attend and Spell model

Figure 6.2: The ConvNet architecture. The input is five gray level frames centered on the mouth region. The 512-dimensional fc6 vector forms the input to the LSTM.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Support</th>
<th>Filt dim.</th>
<th># filts.</th>
<th>Stride</th>
<th>Data size</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv1</td>
<td>3×3</td>
<td>5</td>
<td>96</td>
<td>1×1</td>
<td>109×109</td>
</tr>
<tr>
<td>pool1</td>
<td>3×3</td>
<td>-</td>
<td>-</td>
<td>2×2</td>
<td>54×54</td>
</tr>
<tr>
<td>conv2</td>
<td>3×3</td>
<td>96</td>
<td>256</td>
<td>2×2</td>
<td>27×27</td>
</tr>
<tr>
<td>pool2</td>
<td>3×3</td>
<td>-</td>
<td>-</td>
<td>2×2</td>
<td>13×13</td>
</tr>
<tr>
<td>conv3</td>
<td>3×3</td>
<td>256</td>
<td>512</td>
<td>1×1</td>
<td>13×13</td>
</tr>
<tr>
<td>conv4</td>
<td>3×3</td>
<td>512</td>
<td>512</td>
<td>1×1</td>
<td>13×13</td>
</tr>
<tr>
<td>conv5</td>
<td>3×3</td>
<td>512</td>
<td>512</td>
<td>1×1</td>
<td>13×13</td>
</tr>
<tr>
<td>pool5</td>
<td>3×3</td>
<td>-</td>
<td>-</td>
<td>2×2</td>
<td>6×6</td>
</tr>
<tr>
<td>fc6</td>
<td>6×6</td>
<td>512</td>
<td>512</td>
<td>-</td>
<td>1×1</td>
</tr>
</tbody>
</table>

Table 6.1: The ConvNet architecture.

ingests the inputs in reverse time order (as in Equation 6.6), which has been shown to improve results in Sutskever et al. (2014).

6.1.2 Listen: Audio encoder

The Listen module is an LSTM encoder similar to the Watch module, without the convolutional part. The LSTM directly ingests 13-dimensional MFCC features in reverse time order, and produces the state vector s^a, the hidden vector h^a and the output vectors o^a.

$$h^a_j, o^a_j = \text{LSTM}(x^a_j, h^a_{j+1}) \quad (6.8)$$

$$s^a = h^a_1 \quad (6.9)$$
6.1.3 Spell: Character decoder

The Spell module is based on a LSTM transducer (Bahdanau et al., 2015, Chan et al., 2015, Chorowski et al., 2015), but here we add a dual attention mechanism. At every output step k, the decoder LSTM produces the decoder states h^d_k and output vectors o^d_k from the previous step context vectors c^v_{k-1} and c^a_{k-1}, output y_{k-1} and decoder state h^d_{k-1}. The attention vectors are generated from the attention mechanisms Attentionv and Attentiona.

The implementation of the mechanism is based on the work of Bahdanau et al. (Bahdanau et al., 2015). The attention vector α^v_k for the video stream, also often called the alignment, is computed as follows:

$$\alpha^v_{k,i} = \text{Attention}^v(h^d_k, o^v_i)$$
$$= \frac{\exp(e_{k,i})}{\sum_{i=1}^{n} \exp(e_{k,i})}$$
$$e_{k,i} = w^T \tanh(W h^d_k + V o^v_i + b)$$

where w, b, W and V are weights to be learnt, i is the index over the input video sequence, k is the index for the output time step.

We use two independent attention mechanisms for the lip and the audio input streams to refer to the asynchronous inputs with different sampling rates. The attention vectors are fused with the output states (Equations 6.14 and 6.15) to produce the context vectors c^v_k and c^a_k that encapsulate the information required to produce the next step output. The model generates the output from the list given in Table 6.2 and the probability distribution is generated by an MLP with softmax over the output.
6.1. The Watch, Listen, Attend and Spell model

\[h^d_k, o^d_k = \text{LSTM}(h^d_{k-1}, y_{k-1}, c^v_{k-1}, c^a_{k-1}) \]
(6.13)

\[c^v_k = o^v \cdot \text{Attention}^v(h^d_k, o^v) \]
(6.14)

\[c^a_k = o^a \cdot \text{Attention}^a(h^d_k, o^a) \]
(6.15)

\[P(y_i|x^v, x^a, y_{<i}) = \text{softmax}(\text{MLP}(o^d_k, c^v_k, c^a_k)) \]
(6.16)

At \(k = 1 \), the final encoder states \(s_l \) and \(s_a \) are used as the input instead of the previous decoder state – *i.e.* \(h^d_0 = \text{concat}(s^a, s^v) \) – to help produce the context vectors \(c^v_1 \) and \(c^a_1 \) in the absence of the previous state or context.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>,</td>
<td>.</td>
<td>!</td>
<td>?</td>
<td>:</td>
<td>’</td>
<td>[sos]</td>
<td>[eos]</td>
<td>[pad]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2: The output characters

Discussion. In our experiments, we have observed that the attention mechanism is absolutely critical for the audio-visual speech recognition system to work. Without attention, the model appears to ‘forget’ the input signal, and produces an output sequence that correlates very little to the input, beyond the first word or two (which the model gets correct, as these are the last words to be seen by the encoder). The attention-less model yields Word Error Rates over 100%, so we do not report these results.

The dual-attention mechanism allows the model to extract information from both audio and video inputs, even when one stream is absent, or the two streams are not time-aligned. The benefits are clear in the experiments with noisy or no audio (Section 6.4).

Bidirectional LSTMs have been used in many sequence learning tasks (Chan et al., 2015; Chorowski et al., 2015; Graves et al., 2013) for their ability to produce outputs
conditioned on future context as well as past context. We have tried replacing the unidirectional encoders in the Watch and Listen modules with bidirectional encoders, however these networks took significantly longer to train, whilst providing no obvious performance improvement. This is presumably because the Decoder module is anyway conditioned on the full input sequence, so bidirectional encoders are not necessary for providing context, and the attention mechanism suffices to provide the additional local focus.

6.2 Training strategy

In this section, we describe the strategy used to effectively train the Watch, Listen, Attend and Spell network, making best use of the limited amount of data available.

6.2.1 Curriculum learning

Our baseline strategy is to train the model from scratch, using the full sentences from the ‘Lip Reading Sentences’ dataset – previous works in speech recognition have taken this approach. However, as [Chan et al., 2015] reports, the LSTM network converges very slowly when the number of timesteps is large, because the decoder initially has a hard time extracting the relevant information from all the input steps.

We introduce a new strategy where we start training only on single word examples, and then let the sequence length grow as the network trains. These short sequences are parts of the longer sentences in the dataset. We observe that the rate of convergence on the training set is several times faster, and it also significantly reduces overfitting, presumably because it works as a natural way of augmenting the data. The test performance improves by a large margin, reported in Section 6.4.
6.2. Training strategy

6.2.2 Scheduled sampling

When training a recurrent neural network, one typically uses the previous time step ground truth as the next time step input, which helps the model learn a kind of language model over target tokens. However during inference, the previous step ground-truth is unavailable, resulting in poorer performance because the model was not trained to be tolerant to feeding in bad predictions at some time steps. We use the scheduled sampling method of Bengio et al. (2015) to bridge this discrepancy between how the model is used at training and inference. At train time, we randomly sample from the previous output, instead of always using the ground-truth. When training on shorter sub-sequences, ground-truth previous characters are used. When training on full sentences, the sampling probability from the previous output was increased in steps from 0 to 0.25 over time. We were not able to achieve stable learning at sampling probabilities of greater than 0.25.

6.2.3 Multi-modal training

Networks with multi-modal inputs can often be dominated by one of the modes (Feichtenhofer et al., 2016). In our case we observe that the audio signal dominates, because speech recognition is a significantly easier problem than lip reading. To help prevent this from happening, one of the following input types is selected with uniform probability at train time for each example: (1) audio only; (2) lips only; (3) audio and lips.

If mode (1) is selected, the audio-only data described in Section 6.3.1 is used. Otherwise, the standard audio-visual data is used.

We have over 300,000 sentences in the recorded data, but only around 100,000 have corresponding facetracks. In machine translation, it has been shown that monolingual dummy data can be used to help improve the performance of a translation model (Sennrich et al., 2016).
6.2. Training strategy

By similar rationale, we use the sentences without facetracks as supplementary training data to boost audio recognition performance and to build a richer language model to help improve generalisation.

6.2.4 Training with noisy audio

The WLAS model is initially trained with clean input audio for faster convergence. To improve the model’s tolerance to audio noise, we apply additive white Gaussian noise with SNR of 10dB (10:1 ratio of the signal power to the noise power) and 0dB (1:1 ratio) later in training.

6.2.5 Implementation details

The input images are 120×120 in dimension, and are sampled at 25Hz. The image only covers the lip region of the face, as shown in Figure 6.6. The ConvNet ingests 5-frame sliding windows using the Early Fusion method of Chapter 5, moving 1-frame at a time. The MFCC features are calculated over 25ms windows and at 100Hz, with a time-stride of 1. For Watch and Listen modules, we use a three layer LSTM with cell size of 256. For the Spell module, we use a three layer LSTM with cell size of 512.

The output size of the network is 45, for every character in the alphabet, numbers, common punctuations, and tokens for [sos], [eos], [pad].

Our implementation is based on the TensorFlow library \cite{abadi2016tensorflow}. The network is trained using stochastic gradient descent with a batch size of 64 and with dropout and label smoothing. The layer weights of the convolutional layers are initialised from the visual stream of Chapter 4. All other weights are randomly initialised.

An initial learning rate of 0.1 was used, and decreased by 10% every time the training error did not improve for 2,000 iterations. Training on the full sentence data was
stopped when the validation error did not improve for 5,000 iterations.

6.3 Dataset

The dataset is built from the audio-visual corpus described in Chapter 3.

Sentence extraction. The videos are divided into individual sentences/ phrases using the punctuations in the transcript. The sentences are separated by full stops, commas and question marks; and are clipped to 100 characters or 10 seconds, due to GPU memory constraints. We do not impose any restrictions on the vocabulary size.

Two overlapping datasets are generated from the corpus, representing different test conditions: the LRS dataset containing only the front-facing speakers; and the MV-LRS dataset containing videos taken from a balance of different viewpoints, from frontal to profile.

The training, validation and test sets are divided according to broadcast date, and the statistics of spoken sentences corresponding to each set are shown in Table 6.3 for the frontal-only data and Table 6.4 for the multi-view data. The dataset contains thousands of different speakers which enables the model to be speaker agnostic.

<table>
<thead>
<tr>
<th>Set</th>
<th>Dates</th>
<th># Utter.</th>
<th>Vocab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>01/2010 - 12/2015</td>
<td>101,195</td>
<td>16,501</td>
</tr>
<tr>
<td>Val</td>
<td>01/2016 - 02/2016</td>
<td>5,138</td>
<td>4,572</td>
</tr>
<tr>
<td>Test</td>
<td>03/2016 - 09/2016</td>
<td>11,783</td>
<td>6,882</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>118,116</td>
<td>17,428</td>
</tr>
</tbody>
</table>

Table 6.3: **The Lip Reading Sentences (LRS) audio-visual dataset.** Division of training, validation and test data; and the number of utterances and vocabulary size of each partition.
6.4. Experiments on frontal view datasets

<table>
<thead>
<tr>
<th>Set</th>
<th>Dates</th>
<th># Utter.</th>
<th>Vocab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>01/2010 - 12/2015</td>
<td>67,793</td>
<td>14,440</td>
</tr>
<tr>
<td>Val</td>
<td>01/2016 - 02/2016</td>
<td>2,352</td>
<td>4,330</td>
</tr>
<tr>
<td>Test</td>
<td>03/2016 - 09/2016</td>
<td>4,429</td>
<td>4,375</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>74,574</td>
<td>14,960</td>
</tr>
</tbody>
</table>

Table 6.4: The Multi-View Lip Reading Sentences (MV-LRS) dataset. Division of training, validation and test data; and the number of utterances and vocabulary size of each partition.

6.3.1 Audio-only data

In addition to the audio-visual dataset, we prepare an auxiliary audio-only training dataset. These are the sentences in the BBC programs for which facetracks are not available. The use of this data is described in Section 6.2.3. It is only used for training, not for testing.

<table>
<thead>
<tr>
<th>Set</th>
<th>Dates</th>
<th># Utter.</th>
<th>Vocab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>01/2010 - 12/2015</td>
<td>342,644</td>
<td>25,684</td>
</tr>
</tbody>
</table>

Table 6.5: Statistics of the Audio-only training set.

6.4 Experiments on frontal view datasets

In this section we evaluate and compare the proposed architecture and training strategies. We also compare our method to the state of the art on public benchmark datasets.

To clarify which of the modalities are being used, we call the models in lips-only and audio-only experiments Watch, Attend and Spell (WAS), Listen, Attend and Spell (LAS) respectively. These are the same Watch, Listen, Attend and Spell model with either of the inputs disconnected and replaced with all-zeros.
6.4. Experiments on frontal view datasets

6.4.1 LRS dataset.

The models are trained on the frontal-only LRS dataset (the train/val partition) and the Audio-only training dataset (Section 6.3). The inference and evaluation procedures are described below.

Beam search. Decoding is performed with beam search of width 4, in a similar manner to (Chan et al., 2015, Sutskever et al., 2014). At each timestep, the hypotheses in the beam are expanded with every possible character, and only the 4 most probable hypotheses are stored. Figure 6.3 shows the effect of increasing the beam width – there is no observed benefit for increasing the width beyond 4.

![Figure 6.3: The effect of beam width on Word Error Rate.](image)

Evaluation protocol. The models are evaluated on an independent test set (Section 6.3). For all experiments, we report the Character Error Rate (CER), the Word Error Rate (WER) and the BLEU metric. CER and WER are defined as

\[
\text{Error Rate} = \frac{S + D + I}{N},
\]

where \(S\) is the number of substitutions, \(D\) is the number of deletions, \(I\) is the number of insertions to get from the reference to the hypothesis, and \(N\) is the number of words in the reference. BLEU (Papineni et al., 2002) is a modified form of n-gram precision to compare a candidate sentence to one or more reference sentences. Here, we use the unigram BLEU.

Results. All of the training methods discussed in Section 6.2 contribute to improving the performance. A breakdown of this is given in Table 6.6 for the lips-only experiment. For all other experiments, we only report results obtained using the best
6.4. Experiments on frontal view datasets

<table>
<thead>
<tr>
<th>Method</th>
<th>SNR</th>
<th>CER</th>
<th>WER</th>
<th>BLEU†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lips only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional†</td>
<td>-</td>
<td>58.7%</td>
<td>73.8%</td>
<td>23.8</td>
</tr>
<tr>
<td>WAS</td>
<td>-</td>
<td>59.9%</td>
<td>76.5%</td>
<td>35.6</td>
</tr>
<tr>
<td>WAS+CL</td>
<td>-</td>
<td>47.1%</td>
<td>61.1%</td>
<td>46.9</td>
</tr>
<tr>
<td>WAS+CL+SS</td>
<td>-</td>
<td>42.4%</td>
<td>58.1%</td>
<td>50.0</td>
</tr>
<tr>
<td>WAS+CL+SS+BS</td>
<td>-</td>
<td>39.5%</td>
<td>50.2%</td>
<td>54.9</td>
</tr>
<tr>
<td>Audio only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Speech API</td>
<td>clean</td>
<td>17.6%</td>
<td>22.6%</td>
<td>78.4</td>
</tr>
<tr>
<td>Kaldi SGMM+MMI*</td>
<td>clean</td>
<td>9.7%</td>
<td>16.8%</td>
<td>83.6</td>
</tr>
<tr>
<td>LAS+CL+SS+BS</td>
<td>clean</td>
<td>10.4%</td>
<td>17.7%</td>
<td>84.0</td>
</tr>
<tr>
<td>LAS+CL+SS+BS</td>
<td>10dB</td>
<td>26.2%</td>
<td>37.6%</td>
<td>66.4</td>
</tr>
<tr>
<td>LAS+CL+SS+BS</td>
<td>0dB</td>
<td>50.3%</td>
<td>62.9%</td>
<td>44.6</td>
</tr>
<tr>
<td>Audio and lips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLAS+CL+SS+BS</td>
<td>clean</td>
<td>7.9%</td>
<td>13.9%</td>
<td>87.4</td>
</tr>
<tr>
<td>WLAS+CL+SS+BS</td>
<td>10dB</td>
<td>17.6%</td>
<td>27.6%</td>
<td>75.3</td>
</tr>
<tr>
<td>WLAS+CL+SS+BS</td>
<td>0dB</td>
<td>29.8%</td>
<td>42.0%</td>
<td>63.1</td>
</tr>
</tbody>
</table>

Table 6.6: Performance on the LRS test set. **WAS**: Watch, Attend and Spell; **LAS**: Listen, Attend and Spell; **WLAS**: Watch, Listen, Attend and Spell; **CL**: Curriculum Learning; **SS**: Scheduled Sampling; **BS**: Beam Search. †Unigram BLEU with brevity penalty. ‡Excluding samples that the lip reader declined to annotate. Including these, the CER rises to 78.9% and the WER to 87.6%. * The Kaldi SGMM+MMI model used here achieves a WER of 3.6% on the WSJ (eval92) test set, which is within 0.2% of the current state-of-the-art. The acoustic and language models have been re-trained on our dataset.

strategy.

Lips-only examples. The model learns to correctly predict extremely complex unseen sentences from a wide range of content – examples are shown in Table 6.7.

Audio-visual examples. As we hypothesised, the results in Table 6.6 demonstrate that the mouth movements provide important cues in speech recognition when the audio signal is noisy; and also give an improvement in performance even when the audio signal is clean – the character error rate is reduced from 16.2% for audio only to 13.3% for audio together lip reading. Table 6.8 shows some of the many examples where the WLAS model fails to predict the correct sentence from the lips or the audio alone, but successfully deciphers the words when both streams are present.
MANY MORE PEOPLE WHO WERE INVOLVED IN THE ATTACKS
CLOSE TO THE EUROPEAN COMMISSION’S MAIN BUILDING
WEST WALES AND THE SOUTH WEST AS WELL AS WESTERN SCOTLAND
WE KNOW THERE WILL BE HUNDREDS OF JOURNALISTS HERE AS WELL
THAT’S THE LOWEST FIGURE FOR EIGHT YEARS
MANCHESTER FOOTBALL CORRESPONDENT FOR THE DAILY MIRROR
LAYING THE GROUNDS FOR A POSSIBLE SECOND REFERENDUM
ACCORDING TO THE LATEST FIGURES FROM THE OFFICE FOR NA-
TIONAL STATISTICS
IT COMES AFTER A DAMNING REPORT BY THE HEALTH WATCHDOG

Table 6.7: Examples of unseen sentences that WAS correctly predicts (lips only).

<table>
<thead>
<tr>
<th>GT</th>
<th>IT WILL BE THE CONSUMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IN WILL BE THE CONSUMERS</td>
</tr>
<tr>
<td>L</td>
<td>IT WILL BE IN THE CONSUMERS</td>
</tr>
<tr>
<td>AV</td>
<td>IT WILL BE THE CONSUMERS</td>
</tr>
<tr>
<td>GT</td>
<td>CHILDREN IN EDINBURGH</td>
</tr>
<tr>
<td>A</td>
<td>CHILDREN AND EDINBURGH</td>
</tr>
<tr>
<td>L</td>
<td>CHILDREN AND HANDED BROKE</td>
</tr>
<tr>
<td>AV</td>
<td>CHILDREN IN EDINBURGH</td>
</tr>
<tr>
<td>GT</td>
<td>JUSTICE AND EVERYTHING ELSE</td>
</tr>
<tr>
<td>A</td>
<td>JUST GETTING EVERYTHING ELSE</td>
</tr>
<tr>
<td>L</td>
<td>CHINESES AND EVERYTHING ELSE</td>
</tr>
<tr>
<td>AV</td>
<td>JUSTICE AND EVERYTHING ELSE</td>
</tr>
</tbody>
</table>

Table 6.8: Examples of AVSR results. GT: Ground Truth; A: Audio only (10dB SNR); L: Lips only; AV: Audio-visual.

Attention visualisation. The attention mechanism generates explicit alignment between the input video frames (or the audio signal) and the hypothesised character output. Figure 6.4 visualises the alignment of the characters “Good afternoon and welcome to the BBC News at One” and the corresponding video frames.

Decoding speed. The decoding happens significantly faster than real-time. The model takes approximately 0.5 seconds to read and decode a 5-second sentence when using a beam width of 4.
6.4. Experiments on frontal view datasets

Figure 6.4: Alignment between the video frames and the character output (left); alignment between the audio and the character output (right)

6.4.2 Human experiment

In order to compare the performance of our model to what a human can achieve, we instructed a professional lip reading company to decipher a random sample of 200 videos from our test set. The lip reader has around 10 years of professional experience and deciphered videos in a range of settings, e.g. forensic lip reading for use in court, the royal wedding, etc.

The lip reader was allowed to see the full face (the whole picture in the bottom two rows of Figure 6.6), but not the background, in order to prevent them from reading subtitles or guessing the words from the video content. However, they were informed which program the video comes from, and were allowed to look at some videos from the training set with ground truth.

The lip reader was given 10 times the video duration to predict the words being spoken, and within that time, they were allowed to watch the video as many times as they wished. Each of the test sentences was up to 100 characters in length.

We observed that the professional lip reader is able to correctly decipher less than one-quarter of the spoken words (Table 6.6). This is consistent with previous studies on the accuracy of human lip reading (Marschark and Spencer 2010). In contrast,
the WAS model (lips only) is able to decipher half of the spoken words. Thus, this is significantly better than professional lip readers can achieve.

6.4.3 LRW dataset

The ‘Lip Reading in the Wild’ (LRW) dataset (Chapter 5) consists of up to 1000 utterances of 500 isolated words from BBC television, spoken by over a thousand different speakers.

Evaluation protocol. The train, validation and test splits are provided with the dataset. We give word error rates.

Results. The network is fine-tuned for one epoch to classify only the 500 word classes of this dataset’s lexicon. As shown in Table 6.9, our result exceeds the current state-of-the-art on this dataset by a large margin.

<table>
<thead>
<tr>
<th>Methods</th>
<th>LRW</th>
<th>GRID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lan et al. (2009)</td>
<td>-</td>
<td>35.0%</td>
</tr>
<tr>
<td>Wand et al. (2016)</td>
<td>-</td>
<td>20.4%</td>
</tr>
<tr>
<td>Assael et al. (2016)</td>
<td>-</td>
<td>4.8%</td>
</tr>
<tr>
<td>Chung and Zisserman (2016a)</td>
<td>38.9%</td>
<td>-</td>
</tr>
<tr>
<td>WAS (ours)</td>
<td>23.8%</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Table 6.9: **Word error rates** on external lip reading datasets.

6.4.4 GRID dataset

![Figure 6.5: Still images from the GRID dataset.](image)

The GRID dataset (Cooke et al., 2006) consists of 34 subjects, each uttering 1000
phrases. The utterances are single-syntax multi-word sequences of **verb** (4) + **color** (4) + **preposition** (4) + **alphabet** (25) + **digit** (10) + **adverb** (4); *e.g.* ‘put blue at A 1 now’. The total vocabulary size is 51, but the number of possibilities at any given point in the output is effectively constrained to the numbers in the brackets above. The videos are recorded in a controlled lab environment, shown in Figure 6.5.

Evaluation protocol. The evaluation follows the standard protocol of (Wand et al., 2016) and (Assael et al., 2016) – the data is randomly divided into train, validation and test sets, where the latter contains 255 utterances for each speaker. We report the word error rates. Some of the previous works report word accuracies, which is defined as \(W\text{Acc} = 1 - \text{WER} \).

Results. The network is fine-tuned for one epoch on the GRID dataset training set. As can be seen in Table 6.9, our method achieves a strong performance of 3.0% (WER), that substantially exceeds the current state-of-the-art.

6.5 Experiments on multi view datasets

The experiments in Section 6.4 show a leap in the performance of automated lip reading, compared to traditional methods. However, this advance has only been demonstrated for frontal or near frontal faces, and so the question remains: can lips be read in profile to the same standard?

The objective of this section is to answer this question – the Multi-View Watch, Attend and Spell (MV-WAS) model is trained and evaluated on the multi-view dataset described in 6.3. We also test the model on the multi-view OuluVS2 dataset, and show that the performance far surpasses the current state of the art.
6.5. Experiments on multi view datasets

6.5.1 MV-LRS dataset

Training. The MV-WAS model is trained using the curriculum learning approach described in Section 6.2.1, where the model starts to learn from easier, single-word examples and gradually move to longer sentences. A single model is trained for all viewpoints (as opposed to separate models for every viewpoint) given that the viewpoint may change within a sentence (as shown in Figure 6.6), and the amount of data for each viewpoint would be insufficient for training in any case.

We compare performance to the frontal-only model. This model is pre-trained on the LRS dataset, and we fine-tune the LSTM layers on the multi-view dataset until the validation error stops improving. This is done so that the language model (implicitly learnt in the decoder) adapts to the new corpus that consists of videos from previously unseen genres (e.g. dramas).

Evaluation protocol. The performance measures used are consistent with that used for the frontal view experiment – we report the Character Error Rate (CER), the Word Error Rate (WER) and the unigram BLEU measure.

Decoding. The decoding is performed with a beam size of 4.

<table>
<thead>
<tr>
<th>Viewpoint</th>
<th>MV-WAS</th>
<th>WAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CER</td>
<td>WER</td>
</tr>
<tr>
<td>Frontal</td>
<td>46.5%</td>
<td>56.4%</td>
</tr>
<tr>
<td>Three-quarter</td>
<td>50.4%</td>
<td>59.2%</td>
</tr>
<tr>
<td>Profile</td>
<td>54.4%</td>
<td>62.8%</td>
</tr>
</tbody>
</table>

Table 6.10: Results on the MV-LRS dataset. Lower is better for CER and WER; higher is better for BLEU. †Unigram BLEU with brevity penalty.
Results. Performance measures for all viewpoints are given in Table 6.10. The profile performance of the MV-WAS model far exceeds the frontal-only WAS model fine-tuned on our dataset, and also shows a significant improvement for three-quarter faces. The performance of our model on frontal videos is comparable to that of the frontal-only WAS model. Table 6.7 gives examples of successfully read sentences.

6.5.2 OuluVS2 dataset

We evaluate the MV-WAS model on the OuluVS2 dataset [Anina et al., 2015a], described in Section 5.3.3. Here, we assess on a speaker-independent experiment, where 12 specified subjects are reserved for testing.

Training. We use the sequence-to-sequence model pre-trained on the MV-LRS dataset, and fine-tune the LSTM layers on the training portion of the OuluVS2 data. Unlike previous works [Lee et al., 2016, Saitoh et al., 2016, Zhou et al., 2014a] that use separate models trained for each viewpoint, we only train a single model to classify the phrases at all angles.

Decoding. The decoding is performed with a beam size of 1.

Results. As can be seen in Table 6.11 our method achieves a strong performance, and sets the new state-of-the-art for the multi-view task.

<table>
<thead>
<tr>
<th>Method</th>
<th>Frontal</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhou et al. (2014a)</td>
<td>73.0%</td>
<td>75.0%</td>
<td>76.0%</td>
<td>75.0%</td>
<td>70.0%</td>
</tr>
<tr>
<td>Lee et al. (2016)</td>
<td>81.1%</td>
<td>80.0%</td>
<td>76.9%</td>
<td>69.2%</td>
<td>82.2%</td>
</tr>
<tr>
<td>Saitoh et al. (2016)</td>
<td>85.6%</td>
<td>79.7%</td>
<td>80.8%</td>
<td>83.3%</td>
<td>80.3%</td>
</tr>
<tr>
<td>MV-WAS (ours)</td>
<td>91.1%</td>
<td>90.8%</td>
<td>90.0%</td>
<td>90.0%</td>
<td>88.9%</td>
</tr>
</tbody>
</table>

Table 6.11: Classification accuracy on OuluVS2 Short Phrases. Higher is better.
6.6 Conclusion

In this chapter, we have introduced the ‘Watch, Listen, Attend and Spell’ network model that can transcribe speech into characters. The model utilises a novel dual attention mechanism that can operate over visual input only, audio input only, or both. Using this architecture, we demonstrate lip reading performance that exceeds a professional lip reader on videos from BBC television. The model also surpasses the performance of all previous work on standard lip reading benchmark datasets, and we also demonstrate that visual information helps to improve speech recognition performance even when the audio is used.
Chapter 7

Generating talking faces from audio

Figure 7.1: The Speech2Vid model generates a video of a talking face, given still images of the person and a speech segment. The model takes an image of the target face and an audio segment, and outputs a video of the target face lip synched with the audio. Note that the target face need not be in the training dataset i.e. the Speech2Vid is applicable to unseen images and speech.

In this chapter, we propose a method to generate videos of a talking face using only an audio speech segment and a face image of the target identity (audio and image to video). The speech segment need not be spoken originally by the target person (see Figure 7.1). We dub the approach Speech2Vid. Our method differs from previous approaches for this task (see Section 2.2.5) in that instead of learning phoneme to viseme mappings, we learn the correspondences between raw audio and video data directly. By focusing on the speech portion of audio and tight facial regions of speakers in videos, the Speech2Vid model is able to produce natural-looking videos of a talking face at test time even when using an image and audio outside of the training dataset.

The key idea of the approach is to learn a joint embedding of the target face and speech segment that can be used to generate a frame of that face saying (lip synched
7.1 The Speech2Vid model

Our main goal at test time is to generate a video of a talking face given two inputs: (i) an audio segment, and (ii) still images of the target identity (frontal headshot). The Speech2Vid model (summarised in Figure 7.2 at the block level), consists of four main components: an audio encoder, an identity image encoder, a talking face image decoder, and a deblurring module. For a given input sample, the model generates one frame of image output that best represents the audio sample at a specific time step. The model generates the video on a frame-by-frame basis by sliding a 0.35-second window over the audio sequence.

Figure 7.2: The overall Speech2Vid model is a combination of two encoders taking in two different streams of data, audio and image, a decoder that generates images corresponding to the audio, and a CNN deblurring module that refines the output frames.

7.1.1 Input Representations

This section describes the input representations for the audio and identity. These inputs are fed into separate modules in the network in the forms of 0.35-second audio with) the speech segment. Thus the inputs are still images of the face (that provides the identity, but is not speaking the target segment) and the target speech segment; and the generated output is the target face speaking the segment. The Speech2Vid model can be learnt from unlabelled videos, as shown in Figure 7.6.
7.1. The Speech2Vid model

and a still image of the target identity.

Audio. The input to the audio encoder are Mel-frequency cepstral coefficients (MFCC) values extracted from the raw audio data. 13 coefficients are calculated per sample but only the last 12 are used in our case. Each sample fed into the audio encoder is made up of 0.35-second input audio data with a sampling rate of 100Hz resulting in 35 time steps. Each encoded sample can be viewed as a 12×35 heatmap, like the audio input in Chapter 4 (see Figure 7.3).

![MFCC heatmap](image1)

Figure 7.3: Inputs to the Vid2Speech model. **Left:** MFCC heatmap for the 0.35-second time period. The 12 rows in the matrix represent the power of the audio at different frequencies. **Right:** Still image of the speaker.

Identity. The input to the identity encoder is a single still image with dimensions $112 \times 112 \times 3$. In Section 7.3.2, we also experiment with having multiple still images as the input to the identity encoder instead of one, which significantly improves the output video quality.

7.1.2 The Architecture

The Speech2Vid architecture is given in Figure 7.4. We describe the three modules (audio encoder, the identity encoder, and the image decoder) in the following paragraphs. Note, these three modules are trained together. The deblurring module (described below in Section 7.1.3) is trained separately.

Audio encoder. We use a convolutional neural network originally designed for image recognition. The layer configurations is based on AlexNet (Krizhevsky et al., 2012).
7.1. The Speech2Vid model

and VGG-M (Chatfield et al., 2014), but filter sizes are adapted for the unusual input dimensions. This is similar to the configuration used to learn audio embedding in Chapter 4.

Figure 7.4: The three modules in the Speech2Vid model. From top to bottom: (i) audio encoder, (ii) identity encoder with a single still image input, and (iii) image decoder. \(/2 \) refers to the stride of each kernel in a specific layer which is normally of equal stride in both spatial dimensions except for the Pool2 layer in which we use stride 2 in the timestep dimension (denoted by \(/2_t \)). The network includes two skip connections between the identity encoder and the image decoder.

Identity encoder. Ideally, the identity vector produced by the encoder should have features unique for facial recognition and as such we use a VGG-M network pre-trained on the VGG Face dataset (Parkhi et al., 2015). The dataset includes 2.6M images of 2.6K unique identities. Only the weights of the convolutional layers are used in the encoder, while the weights of the fully-connected layers are reinitialized.

Image decoder. The decoder takes as input the concatenated feature vectors of the FC7 layers of the audio and identity encoders (both 256-dimensional). The features vector is gradually upsampled, layer-by-layer via transposed convolutions. See details in Figure 7.4. The network features two skip connections to help preserve the defining features of the target identity – this is done by concatenating the encoder activations with the decoder activations (as suggested in Ronneberger et al., 2015) at the locations shown in the network diagram.
7.1. The Speech2Vid model

Loss function. An L_1 loss is used (Equation 7.1), rather than L_2 that is more commonly used for image generation and in auto-encoders, as L_1 tends to encourage less blurring (Isola et al., 2017).

$$
L = \sum_{n=1}^{N} ||\hat{y}_n - y_n||
$$

(7.1)

However, an image-space L_1 or L_2 loss between the prediction and the ground truth images has been known to severely penalise realistic outputs, for instance, slightly darker or lighter images that still look realistic. To mitigate this problem, we use the ‘content representation’ loss proposed by Chen and Koltun (2017, Gatys et al., 2016), where we take L_1 losses between layer activations from a pre-trained CNN, as well as between the images. Here, a pre-trained VGG Face (Parkhi et al., 2015) network is used, and the activations from 5 convolution layers (conv1 to conv5) are matched (Figure 7.5), so that both fine details and global arrangements can be captured. The benefit of using this content loss can be seen in Figure 7.11.

![Content Loss Diagram](image)

Figure 7.5: Content loss.

Training protocol. The network is trained on the video dataset described in Sec-
During training, the ground truth output image of the target identity speaking the audio segment is used as supervision. The image is taken from the middle frame of the video in the 0.35-second sampling window. The image for the input identity of the speaker is randomly sampled from a different point in time, as shown in Figure 7.6. When multiple still images are used for the input identity (Section 7.3.2) we randomly sample multiple images from the same video stream.

![Sampling strategy for identity images during training. Identities are randomly sampled from future frames far from actual audio/output image samples.](image)

Discussion. The network architecture is based purely on ConvNets, as opposed to the recurrent architectures often used for tasks relating to time sequences. The rationale is that the mouth shape of the speaker does not depend on anything other than the phoneme that is being said at the exact moment, and the long term context is unimportant. We find that the 0.35-second window is more than enough to capture this information. At test time, the video is generated frame-by-frame by sliding a temporal window across the entire audio segment while using the same single identity image.

Implementation details. Our implementation is based on the MATLAB toolbox MatConvNet (Vedaldi and Lenc, 2015) and trained on a NVIDIA Titan X GPU with 12GB memory. The network is trained with batch normalisation and a fixed learning rate of 10^{-5} using stochastic gradient descent with momentum. The training was stopped after 20 epochs, or when the performance on the validation set stops improving, whichever is sooner.

At test time, the network (including the deblurring layers) runs faster than twice
real-time on a GPU. This can be further accelerated by pre-computing and saving the features from the identity encoder module, rather than running this for every frame.

In the case of redubbing video, the output video is generated at the same frame rate as the original video.

7.1.3 Deblurring module

CNNs trained to generate images with L_1 and L_2 losses tend to produce blurry images [Pathak et al., 2016] [Zhang et al., 2016]. To mitigate this problem, we train a separate deblurring CNN to sharpen the images produced by the Speech2Vid model.

The model is inspired by VDSR [Kim et al., 2016], which uses a residual connection between the input and output, so that the network only has to learn the image difference. Our implementation has 10 convolutional and ReLU layers, and the layer configuration is shown in Figure 7.7.

![Deblurring CNN module](image)

Figure 7.7: Deblurring CNN module

We train the network on artificially blurred face images (Figure 7.8), as opposed to training the network end-to-end together with the generator network. This is because the alignments between the input image, the target (ground truth) image and the generated image are not perfect even after the spatial registration (of Section 7.2), and thus avoid the deblurring network having to learn the residual coming from the misalignment.

The images that we ask the CNN to deblur are relatively homogeneous in content (they are all face images), and we find that the CNN performs very well in sharpening the images under this constraint.
This section describes the strategy to prepare a large-scale dataset to train the generation network.

Video description. We start from the videos from the audio-visual corpus described in Chapter 3. This data mostly consists of broadcast news, which provide ideal training data for this task, given that a large proportion of the face tracks are front-facing, and of high quality. Moreover, the words are generally clearly spoken without too much background noise, and hence provide an easier learning environment for the network.

Spatial registration. In order to establish spatial correspondence between the input
face (that provides the identity to the encoder) and the output face (from the decoder) in training from the ground truth frames, we register the facial landmarks between the two images. This is done by performing a similarity transformation (scale, rotation and translation) between the faces and an exemplar face with canonical position (Figure 7.9 middle). Only the landmarks on the eyes and the nose, not the mouth, are used to align the face image, as the mouth movements contain the information that we wish to capture.

Data statistics. The train, validation and test sets are divided by broadcast date. We use the splits given in Chapters 5 and 6. For every valid face track, we extract every 5th frame and the corresponding audio as samples for training and validation. Statistics on the dataset is given in Table 7.1.

<table>
<thead>
<tr>
<th>Set</th>
<th># Hours</th>
<th># Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>37.7</td>
<td>678,389</td>
</tr>
<tr>
<td>Val</td>
<td>0.5</td>
<td>9,287</td>
</tr>
</tbody>
</table>

Table 7.1: Dataset statistics

7.3 Experiments

Figure 7.10: **Top row:** Identity 1 and the corresponding generated frames; **Middle row:** Identity 2 and the corresponding generated frames; **Bottom row:** Captions of the audio segment. *Best seen in video form.*

Figure 7.10 shows a visualization of the output of the model (the frames of the two segments highlighted in the captions “major” and “based on”). Note, the movement
of the mouths of the two examples reflect the sound of each word not unlike phoneme-
to-viseme correspondences.

7.3.1 Preserving Identity with Skip Connections

![Figure 7.11:](image)

Figure 7.11: (a) Original still image to animate (input to the identity encoder); (b) Output frames without skip connection; (c) Output frames with skip connection and one input image; (d) Output frames with skip connection and five input images; (e) Output frames with skip connection and five input images, trained with VGG Face content loss.

Figure 7.11 shows a set of generated faces and various target identities (original stills).

We observe that the skip connections are crucial to carry facial features from the input
image to the generated output – without these, the generated images lose defining facial features of target identities, as shown in the middle column. The skip connections at earlier layers (e.g. after conv1) were not used as it encouraged the output image to be too similar to the still input, often restricting the mouth shapes that we want to animate.

7.3.2 Preserving Identity with Multiple Still Images

Instead of a single image specifying the unique identity, five distinct images are concatenated channel-wise resulting in an input dimension of 112 × 112 × 15, and the conv1 layer of the identity encoder are modified to ingest inputs of these dimensions. In training these examples are sampled with a similar strategy to that of Figure 7.6, but multiple ‘identity’ images are sampled, instead of just one.

As can be seen in Figure 7.11 having multiple image examples for the unique identity enhances the quality of the generated faces. There are two reasons for this: first, with multiple example images as input, it is likely that the network now has access to images of the person showing the mouth open as well as closed. Thus, it has to hallucinate less in generation as, in principle, more can be sourced directly from the input images; Second, although the faces are aligned prior to the identity encoder, there are minor variations in the movement of the face other than the lips that are not relevant to the speech, from blinking and microexpression. The impact of these minor variations when extracting unique identity features is reduced by having multiple still images of the same person.

7.3.3 Application: Lip Transplant/Re-dubbing Videos

The Speech2Vid model can be applied to visually re-dub a source video with a different segment of spoken audio. The key stages are as follows: (i) obtain still images from
the source video for identity; (ii) generate the face video for the given audio and identity using the Speech2Vid model; (iii) re-align the landmarks of the generated video to the source video frames, and (iv) visually blend the aligned face with the source video frame.

Figure 7.12: **Top left:** Original still image; **Top right:** Generated mouth region, aligned with the original (target) face; **Bottom left:** Generated mouth region, superimposed on the original face. **Bottom right:** Generated mouth region, blended with the original face.

Alignment. Facial landmarks in the target video is determined using the method of [Kazemi and Sullivan, 2014a]. A similarity transformation is used to align the generated face with the original face in the target image. Figure 7.12 (right) shows the generated face in alignment with the original face.

Poisson editing. The Poisson blending algorithm (Perez et al., 2003) blends two images together by matching gradients with boundary conditions. We use this technique to match the generated face with the source video frame, as shown in Figure 7.12. This can be used to blend the face from the same, or different identity to the source video frame.

Discussion. This method can be used to blend the generated face as a whole, or to
We qualitatively find that we strike the best balance between image naturalness and movement naturalness by only blending the lower half of the face, from just below the eyes.

7.4 Conclusion

We have demonstrated that the Speech2Vid model is able to generate videos of any identity speaking from any source of input audio. This work shows that there is promise in generating video data straight from an audio source. We have also shown that re-dubbing videos from a different audio source (independent of the original speaker) is possible.
One of the remarkable properties of deep learning with ConvNets is their ability to learn to classify images on their content given only supervision at the class level, \textit{i.e.} without having to provide stronger supervisory information such as bounding boxes or pixel-wise segmentation. In particular the position and size of objects is unknown in the training images. This ability is evident from the results of the ImageNet and PASCAL VOC classification challenges \cite{Everingham15, Russakovsky15}, and indeed we have witnessed an annual increase in performance as new architectures and training regimes have been developed \cite{Deng09, He15, Hu17, Krizhevsky12, Simonyan15, Szegedy15}. Furthermore, several recent works have also shown that despite this class-level weak-supervision, the trained networks can to some extent infer the localization of the objects that the image contains \cite{Oquab15, Papandreou15, Simonyan14}.

In this chapter we investigate this ability in image time series. Our aim is to obtain ConvNets that can both \textit{classify} a time series clip as to whether it contains a target sequence or not, and \textit{localize} the target sequence in the clip, using only class level supervision of the clip. Why is this challenging? There are two reasons, first we
consider target sequences that are very short within clips that are long – for example a target lasting less than 10 frames in a clip of hundreds of frames (a target less than 0.5s in a 12s clip); second, the supervision can be not only weak, but also noisy.

The benefits of achieving this are immense: traditionally for time series the supervision is strong, either time aligned or, if not aligned, then complete (see below); such supervision can be expensive and difficult to obtain in the visual realm. However, by relaxing the supervisory requirements, so that only labels at the clip level are used as shown here, labelling is far easier to obtain. The outcome is that it is possible to learn and localize short temporal signals, such as a hand gesture, which are virtually invisible to a non-expert. This is a ‘needle in a haystack’ problem, where the needle is unknown.

Usually time series are the province of Recurrent Neural Networks (RNNs), for example LSTMs [Hochreiter and Schmidhuber 1997]. Here we instead investigate non-recurrent feedforward ConvNet architectures for the classify and localize tasks through two problems: (i) speech recognition, and (ii) sign language recognition. In the first time series example, the sound is represented as an image using the standard MFCC features against time encoding, and the supervision is weak. In the second time series example, the meaning of the sign can be conveyed by a combination of hand motion, hand shape and facial expressions, and the supervision is both weak and noisy. For this example, we also investigate the image encodings of the hand motion and hand shape that are suitable for input to the ConvNet. Note, for both these problems it is a sequence that must be recognized – the target cannot be spotted in a single frame or time instance (as is the case for some human actions, e.g. playing an instrument).

We make the following contributions: (i) we show that under weak and noisy supervision it is possible to learn to classify image time series clips as to whether they contain a short target sequence or not, using a suitable ConvNet architecture; (ii) we show that the location of the target sequence can be obtained by back-propagating
through the network in the manner of Simonyan et al. (2014); and (iii) to achieve this we propose and investigate image time series encodings and corresponding ConvNet architectures. We also investigate the effects of different loss functions for this task.

To the best of our knowledge, this is the first time ConvNets have been used to recognize and localize complex temporal sequences, such as the gestures in sign language, in image time series using such weak annotation in training. The outcome is that it is possible to learn to recognize and localize individual signs depending on both hand motion and hand shape in long temporal clips. The performance far exceeds previous work in this area in terms of supervisory requirements and generalization across signers.

More generally, the method is applicable to other situations that involve plucking sequences out of long clips. For example, keyword spotting in always on speech recognition, identifying pathologies in medical time series data, or localizing human actions in videos.

8.1 Representations and architectures for recognizing time sequences

Given an audio clip of speech or a video clip of sign language gestures, the objectives are to determine if a target sequence is present in the clip, and, if so, where it is. We set up two problems with different levels of difficulty: (i) finding words spoken in an audio clip using supervision that is weak; and (ii) finding words signed as gestures in sign language video using supervision that is both weak and noisy. For gestures, both the motion and shape of the hands are considered. In both problems there are two issues: (i) how to encode the image time series, and (ii) the design of the ConvNet architecture to recognize the target sequence. Of course, these two issues are coupled.
8.1.1 Audio recognition

The input audio data is Mel-frequency cepstral coefficient (MFCC) \cite{davis1980speech} values. This is a representation of the short-term power spectrum of a sound on a non-linear mel scale of frequency. 12 mel frequency bands are used at each time step. The features are computed at a sampling rate of 100Hz, giving 600 time steps for a 6-second input signal.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{audio_motion_heatmaps.png}
\caption{Temporal representations as heatmaps for audio (left) and motion (right). The audio image encodes the 12 MFCC features, and these are reflected vertically (at A and L) to mitigate boundary effects for the filters, resulting in an image of height 18 pixels. The represented audio is \textit{‘you’ve got a simple little dish’}. For the motion, the two channels representing position are shown, with red representing negative values and green positive. The represented motion is for the BSL sign for \textit{‘valley’} (a V-shape drawn with both hands moving downwards). Note that row 3 representing the right-hand (left in the image) x-values get dimmer with time as x increases and the values become less negative, whereas row 4 representing y-values get brighter with time as y increases and the values become more positive.}
\end{figure}

\textbf{Representation.} The audio is encoded as a heatmap image representing MFCC values for each time step and each mel frequency band (see Figure 8.1 left). The top and bottom three rows of the image are reflected to reduce boundary effects. Previous work \cite{geras2015} has also attempted to train image-style ConvNet for such inputs, but only with strong (frame-level) supervision.

\textbf{Architecture.} We use a convolutional neural network inspired by those designed for image recognition. Our layer architecture (Figure 8.2) is based on AlexNet \cite{krizhevsky2012}, but with modifications. AlexNet takes a square image of size 224×224
8.1. Representations and architectures for recognizing time sequences

Figure 8.2: ConvNet architectures for Audio (left) and Hand shape (middle/right). Max-pooling is used in all pooling layers. The five numbers following each convolutional layer specify: the size of the filters, the number of channels, and the resolution of the layer.

pixels, whereas our input size is at least 600 pixels (the number of time steps) in the time-direction, and only 18 pixels in the other direction (so the input image is \(18 \times 600\) pixels). We introduce an aggressive max-pooling layer of size 7 in time at pool5. The design intention is as follows: the receptive field size of a pixel in conv5 is 160, which is equivalent to 1.6 seconds. Given that the relevant information (the target word) is only 0.5 seconds in length, we conjecture that the target sequence is already encoded in a single activation in the time-domain. Max-pooling at this level should therefore collect the strong activations from the relevant parts and discard weak activations from the rest.

8.1.2 Motion recognition

The data to be represented consist of the pixel coordinates of the two hands and head in each frame (i.e. six values), hereafter referred to as keypoints. Details of how these points are obtained are given in Section 8.3.

Representation. Our choice of representation for the motion information is deliberately similar to that of audio. The position of keypoints on the body (e.g. head,
hands, etc.) are stored as intensity values in a heatmap (Figure 8.1, right). Two bytes (the first two channels) are used to store the position, which requires more precision, and one byte (the third channel) is used for the velocity (the frame difference in position).

Discussion. As well as its similarity to the audio encoding, this motion encoding was chosen as one that should be suited to convolutional filter learning. For example, horizontal temporal derivative filters on the brightness values can measure if the hand is moving upwards (negative output) or is stationary (zero output). Filters covering several rows can detect if the hands are moving together or not, etc. This encoding has the properties of being compact and minimal. We did consider several other representations, but rejected these as they resulted in much larger input images. For example, the motion could be encoded as optical flow in the manner of [Simonyan and Zisserman 2014], but that would require two images per frame. A second possibility is to build Motion History Images [Ahad et al. 2012], and a third is to simply encode the entire person per frame with no keypoint detection – though in this case the background motion would be extremely distracting and challenging (see Figure 8.5).

Architecture. The architecture of this network follows that of the audio network described in Section 8.1.1, given that the input representation is of the same format.

8.1.3 Hand shape recognition

The data consist of a square image region centred on the right hand keypoint in each frame. A crop of 120×120 pixels is taken around the hand, at a sampling rate of 4 frames per second for 12 seconds, resulting in 48 RGB images. Since a sign typically lasts for less than half a second, only one of these 48 images will be relevant to the target sign.

Representation. We consider two architectures for ‘ingesting’ these 48 images.
The first uses multiple towers and is inspired by representations for human action recognition \cite{Ng2015} with a tower for each of the 48 images. The second encodes the 48 images into a single time-ordered composite (similar to the spatial composites of \cite{Papandreou2015}).

Architecture 1 – multiple stream. The architecture is shown in Figure 8.2 (middle) – there are 48 towers with common $\text{conv}1$ and $\text{conv}2$ layers, each of which takes an input frame. The activations from the towers are combined after pool2 using an element-wise maxima $A_{x,y,c}$ taken across different towers: suppose that the activations of the ith tower at pool2 are $a_{i,x,y,c}^t$ where c is the channel index, and x and y the pixel locations, then $A_{x,y,c} = \max_i(a_{i,x,y,c}^t)$. The intention is that the combination layer collects the strongest activations from the most relevant images. Other positions for the combination layer were tried (e.g. for the conv1 activations), but were found to be less effective than combining the pool2 activations.

Architecture 2 – tiled input. Here, the 48 images are composed into a single image by tiling in the temporal direction. This results in a 120×4800 pixel image with three channels for RGB. Consequently, the output dimensions from the first layers are much larger in the horizontal (temporal) dimension than the vertical due to the large aspect ratio of the input image. The activations are pooled aggressively (horizontal size of 7 pixels) at pool2 and pool5 in the horizontal direction. pool2 was chosen (rather than earlier) because the receptive field size at the input to this layer is large enough to cover a single input image, hence we can assume that the local details for the whole hand have been captured in the pool2 activations. The rationale is similar to the pooling strategy in the audio case.

Discussion. The second representation is simple and surprisingly effective. Virtually no difference in validation performance is observed between the two networks, despite a considerable overhead in the former (e.g. the number of free parameters is similar, but they must be loaded 48 times; the memory required to store the activations
is around 50% greater; and many operations are faster on a single large image vs. multiple small images). Hence, the tiled-input network is the only one considered from this point on.

An obvious alternative might be to stack the multiple images as input channels to one tower, i.e. a 48 channel input ($\times 3$ for RGB). This method was not chosen because the hands in each frame are not exactly spatially registered due to small hand movements and tracking noise. These small localization offsets vary between frames. This means that filters would not be able to learn anything useful in the time direction of the 48 channels. The two representations adopted avoid this lack of registration problem. For example, in the first architecture the pool1 layer can compensate for the localization offsets.

8.1.4 Two-stream gesture recognition

In British Sign Language, the hand shape or hand motion or both may be necessary in order to define a sign. To enable both to be used for sign recognition the hand motion and hand shape networks are combined using late fusion, by concatenating the pool5 activations, before the fully-connected layers. Late fusion is chosen since prior methods [Simonyan and Zisserman, 2014] have found that early fusion (e.g. at conv2) leads to one or the other network dominating. Also, as in [Simonyan and Zisserman, 2014], the two networks are initially trained separately, and then fused and trained together to give a single output.

8.1.5 Loss functions

We experiment with three loss functions:

(i) the *cross-entropy loss*, which is commonly used in multi-class classification problems such as ImageNet:

$$L(S, c) = -q(c) \log P(c) = -q(c) \log \frac{\exp S(c)}{\sum_\sigma \exp S(\sigma)}$$

where $q(c)$ is
1/n for all positive classes, n is the number of positive labels, S is the class score (fc8 output), and c is the class index.

(ii) the \textit{weighted hinge loss}, as a binary classification problem (present/ not present) for each class, which is weighted to deal with imbalances in the training data: \(L(S, l) = w_l \max (0, 1 - lS) \) where \(l \) is the binary class label (present/ not present) and \(w_l \) is the ratio \(n_{neg}/n_{pos} \) for each class when \(l = 1 \), and 1 when \(l = -1 \).

(iii) the \textit{weighted binary logistic loss}, again as a binary classification problem for each class: \(L(S, l) = w_l \log (1 + \exp(-lS)) \) where the notations are the same as above.

All three losses can be used in the case that multiple labels are positive for a clip. The cross-entropy loss is usually used in the exclusive multi-way classification case, such as ImageNet, where only one label is positive, but is not limited to this (van den Oord et al., 2016b).

Allowing multiple labels per clip is beneficial for two reasons: (i) we eliminate the need to discard training sequences that belong to multiple classes, hence increasing the amount of training data available. (ii) it improves the ratio of supervision per subtitle in the training data, in our case, by a factor of 1.22. We expect this benefit to be more significant if the vocabulary size is scaled up, given that the probability of two or more words appearing in a sentence is then higher. The performance under these different loss functions is evaluated and compared in Section 8.4.2.

8.1.6 Localisation via backprop

The objective here is, once the networks have been trained to classify the clip, localize the target sequence within (positive) clips. Simonyan et al. (2014) have shown that it is possible to infer the localization of visual objects in an image as a saliency map for a network trained to classify images. We adapt this method to time series to find the salient temporal intervals in the input signal that have high influence on the class

8.1. Representations and architectures for recognizing time sequences

1

8.1. Representations and architectures for recognizing time sequences

1
8.1. Representations and architectures for recognizing time sequences

Figure 8.3: Salient region for ‘valley’, localised only using motion information. The sign for ‘valley’ is a large V drawn with both hands. (a) Motion heatmap; (b) Saliency map; (c) Saliency over time, after Gaussian filtering; (d) The corresponding target sequence.

The method proceeds by approximating the relation between the class score S and the input image I (represented as a vector) as $S(I) = w^T I + b$. The vector w is the same size as the input image, and the magnitude of its elements signify the influence of the corresponding elements of the image on the class score. Hence the magnitude of w determines a saliency map on the image. The vector w can be obtained as $w = \frac{\partial S}{\partial I}\bigg|_{I_0}$ and this derivative is obtained by back-prop from the class score $S_0(I_0)$ to the image.

In our case, the derivative w shares the dimensions of the input time series. We compute saliency $M_{i,j}$ at position i,j as $M_{i,j} = \max_c |w_{i,j,c}|$ (i.e. the channel-wise maximum over every pixel, the result is shown in Figure 8.3b). A 2-dimensional Gaussian is used to smooth the signal, and then the column-sum is taken to obtain a score function against time (Figure 8.3c). The localisation method is common for all inputs types (i.e. audio, motion and hand).
Figure 8.4: Salient sequences for ‘beef’ (left) and ‘winter’ (right) are highlighted in green. Localised only using the hand shapes. The sign for ‘beef’ is a thumb pointing towards the neck. The sign for ‘winter’ is two clenched fists tremoring.

8.2 Dataset

We collect a novel dataset for this task that is used for recognition and localisation of both spoken words and sign gestures. The dataset consists of 890 high-definition TV broadcast videos aired between 2010 and 2016, each of which is between 30 to 60 minutes in length. The videos are ‘sign-interpreted’ which means that the programmes have a signer in the corner of the screen. We use the video, audio and the corresponding subtitles as the weakly labelled training data for the tasks. We were able to collect a large amount of training data, given that many hours of sign-interpreted programmes are broadcast every day. The format of the dataset is similar to that of Pfister et al. (2013), but orders of magnitude larger in scale. Table 8.1 shows the key statistics of the dataset.

<table>
<thead>
<tr>
<th>Label</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of programmes</td>
<td>890</td>
<td>890</td>
</tr>
<tr>
<td>Total video length (hours)</td>
<td>678</td>
<td>678</td>
</tr>
<tr>
<td>Vocabulary size</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Total # of subtitles</td>
<td>662,165</td>
<td>662,165</td>
</tr>
<tr>
<td>Useful # of subtitles</td>
<td>50,000</td>
<td>104,247</td>
</tr>
<tr>
<td>Min./max. instances per class</td>
<td>500/500</td>
<td>500/2000</td>
</tr>
<tr>
<td># of words per subtitle</td>
<td>9.96</td>
<td>10.11</td>
</tr>
<tr>
<td>In-vocab words per subtitle</td>
<td>1.00</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Table 8.1: Dataset statistics

From a vocabulary of over 40K words, 100 target words are selected primarily based on their frequency of appearance in the programmes. Stop words such as ‘a’, ‘the’,...
and words with more than one meaning such as ‘match’ and ‘bank’ are excluded from selection. We also selected programmes primarily on the genres of ‘wildlife’ and ‘cooking’, in order to reduce this polysemy problem. For the audio recognition task, very short words are also excluded. All target words appear at least 500 times, and for single-label classification, the classes are balanced, with exactly 500 instances each. For multi-label classification, it is not possible to balance the classes, however the problem of unbalanced training data is overcome with per-class weighting in our loss functions.

A sequence is extracted for each occurrence of the target word in the subtitles. The alignment between the subtitle and the signs is imprecise, therefore the temporal window is padded by additional 8 seconds for video and 2 seconds for audio. The total length of each training sequence is 300 frames (12 seconds) for video, and 6 seconds for audio, whereas most subtitles are shorter than 4 seconds.

The dataset is divided into training, validation and test subsets (80:10:10) in chronological order, the test set being the oldest. This prevents the training and the testing
from happening on the same videos. For sign language recognition, the evaluation is performed on an independent dataset rather than our own.

Discussion. This dataset is particularly challenging for a number of reasons: (i) the word order in the subtitle is not the same as the order in which they are signed, hence we cannot estimate when the word might be signed; (ii) a word that appears in the subtitle may not be signed (the proportion of signed video which actually contains the target word is only 20-60%, depending on the word); (iii) the alignment between the sign and the subtitle is unknown and the offset can be more than 5 seconds; (iv) the contents are signed by 50 different signers and the audio has hundreds of speakers; (v) there is a large variation in content, from ‘cooking’ to ‘wildlife’, broadcast over a period of 6 years. (For the audio recognition problem, the first two do not apply.)

8.3 Implementation details

8.3.1 Data preparation

This section describes how the training data is generated. From a single broadcast (Figure 8.5), we extract information in three channels – the audio, the sign-interpreted video and the subtitle text.

![Figure 8.6: Output from the upper-body tracker.](image)

Text extraction and processing. British TV transmits subtitles as bitmaps rather than as text, therefore subtitle text is extracted from the broadcast video using stan-
8.3. Implementation details

dard OCR methods \cite{Buehler2009, Everingham2006}. Subtitles are stemmed (e.g. ‘played’, ‘played’, ‘playing’ all become ‘play’) and stop words (e.g. ‘a’, ‘the’) are removed.

Audio pre-processing. For each sequence, we extract MFCC features every 10ms where the features are computed over a 25ms interval using the same implementation as that in Chapters 4 and 7. The input to the network has 600 time steps, but 650 samples are taken over 6.5 seconds so that it can be jittered for training augmentation using random cropping. The 13-dimensional output vector represents the frequencies relating to the human voice.

Upper-body tracking. We use the ConvNet-based upper body pose estimator of \cite{Pfister2015} to track the head, elbows and hands of the signer. The input to the tracker is a crop of the signer around 900 × 900 pixels, from a Full HD (1920 × 1080) frames. The pose estimator generates a confidence score for each keypoint, and one usually takes the maximum to estimate the location of the keypoint. However, the returned confidence heatmaps for some keypoints often have a multi-modal distribution (e.g. the left-hand detector gives high confidence for both hands), which can give incorrect estimates. Dynamic programming in time corrects many of these errors by optimising between the framewise confidence and the distance of the keypoints between neighbouring frames.

8.3.2 Training

Data augmentation. Applying data augmentation often improves validation performance and reduces overfitting in ConvNet image classification tasks \cite{Krizhevsky2012}. For the audio recognition task, we vary playback speeds and take random crops in the time domain. The audio track is played at three different speeds (0.9×, 1.0×, 1.1×) in training. This affects the audio frequencies as well as the time of the track, hence the MFCC features and the heatmaps have to be re-computed.
Similar augmentation methods are used for the motion image. The video is played back at three different speeds, for which the velocities must be recomputed. The coordinates of the keypoints (the tracker output) are randomly shifted. The brightness of the heatmap image is also varied, which is equivalent to spatially scaling the input video.

The hand shape images are augmented in a similar manner to ordinary ImageNet training. Random crops are taken and the brightness is varied, but the images are not flipped as it can change the meaning of the sign.

Details. Our implementation is based on the MATLAB toolbox MatConvNet (Vedaldi et al., 2014). The network is trained with batch normalisation (Ioffe and Szegedy, 2015). Despite this, a slow learning rate of 10^{-3} to 10^{-4} is used to get a stable learning, due to the noisiness of the data. The training is stopped after 100 epochs, or when the validation error did not improve for 5 epochs, whichever is sooner.

8.4 Experiments

Experiments are conducted on each of the image series types described in Section 8.1. In each case there are two task to be performed: (i) to *classify* the clip (e.g. a 12s time series in the case of video) as to whether it contains the target sequence or not, and (ii) to *localize* (the temporal extent of) the target sequence within the clip. Both tasks are evaluated using Precision Recall curves. For the localization task it is necessary to use a criterion to decide if the target sequence has been correctly localized or not. Here we use a threshold on a temporal overlap score, in a similar manner to that of PASCAL VOC (Everingham et al., 2015).

In the following experiments the methods are trained and evaluated on the train/val and test partitions of the dataset of Section 8.2. However, the noise in the supervision (that only 20–60% of the words in the subtitle are actually signed) presents a
problem for evaluation as even a perfect classifier would not score well under such
circumstances. We deal with this problem by giving results on both our own test set
and also on an external test set (Pfister et al., 2014b) for which the labelling is not
noisy. For audio there is no evaluation problem as the labelling on our test set is not
noisy – words in the subtitles are spoken.

8.4.1 Audio recognition

Task. The task is to classify a 6-second audio clip as to whether it contains a target
word or not, and provide a score of confidence that can be used for the Precision-
Recall evaluation. The method is trained on the train/val partition of the Dataset,
and evaluated on the test partition.

Results. Precision-recall curves for classification are shown in figure 8.7. For the
classification task, strong performance is achieved on a variety of words, the longer
multi-syllable words performing particularly well, whereas short words or words that
rhyme (e.g. ‘cat’, ‘rat’, ‘mat’) are more difficult to learn because the MFCC features
for these words are very similar. Ground truth labels are not available for the local-
isation task, but qualitative results are included in the supplementary material, and
an indication of the strength of the saliency map is shown in Figure 8.8.

8.4.2 Gesture classification and localisation

External test dataset. The test dataset is based on the BBC sign language videos
of Pfister et al. (2014b). This dataset is independent from our main dataset, and the
format is the same as the data used by Pfister et al. (2014a), which makes it useful
for comparisons. A number of words that appear frequently both in our training
dataset and in the external test set (see Table 8.2) have been manually annotated at
frame-level, which is used to evaluate both classification and localisation tasks. These
videos are from different domains to our training dataset, and they are only available in a lower resolution of 720×405 pixels. Given that our networks are trained using hand image crops from Full HD (1920×1080) videos, the test videos must be scaled up to a size suitable for the network.

Evaluation protocol for classification. The task here is to classify whether or not a gesture (corresponding to a word) is present in a 12-second temporal window. The
8.4. Experiments

<table>
<thead>
<tr>
<th>Hand shape only</th>
<th>Motion only</th>
<th>Two streams</th>
</tr>
</thead>
</table>

Figure 8.9: PR curves for *gesture classification* on the external BBC test set. **Left-most column**: hand shape network. **Middle column**: keypoint motion network. **Right-most column**: Combined two-stream network. The word ‘beef’ is easily recognised from the hand shape, but more difficult from the motion. ‘rain’ is recognisable only from the motion. Both motion and the hand shape give cues for ‘winter’ but the two-stream network gives the best performance.

The confidence of a gesture being present in the window (class score S_c) is given by the corresponding value of $fc8$.

Evaluation protocol for localisation. The task is to localise the temporal interval of the half-second target gesture within the 12-second window and provide a ranked
8.4. Experiments

Figure 8.10: PR curves for gesture classification. The two plots on the left show the results on our own test dataset. The plots on the right show results on the external BBC test set. The performance on the external test dataset is considerably better, even though the domain and the format are different from our training dataset. This comparison demonstrates the extent of the supervision noise in our dataset (since only a fraction of the words appearing in the subtitles are actually signed).

Classification results. Precision-recall curves for the gestures are given in Figure 8.9. The results demonstrate that some signs can only be recognised from key-point motions, whilst some others are distinguished by hand shape, which provides the rationale for using a combined network. The model learns to recognise signs that either have discriminative motion and/or hand shapes. However, the method has difficulties learning some signs (e.g. wet, south) where neither are particularly discriminative from other general motions in a typical 12-second window.
8.4. Experiments

Figure 8.11: PR curves for gesture localisation on the external BBC test set. See Table 8.2 for further results.

<table>
<thead>
<tr>
<th>Loss function</th>
<th>Label</th>
<th>beef</th>
<th>chocolate</th>
<th>milk</th>
<th>pig</th>
<th>school</th>
<th>soup</th>
<th>valley</th>
<th>war</th>
<th>winter</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-entropy</td>
<td>Single</td>
<td>48.1</td>
<td>11.4</td>
<td>27.5</td>
<td>25.6</td>
<td>74.1</td>
<td>21.8</td>
<td>82.7</td>
<td>23.4</td>
<td>40.0</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td>Multiple</td>
<td>50.3</td>
<td>58.8</td>
<td>29.2</td>
<td>15.6</td>
<td>42.3</td>
<td>19.5</td>
<td>41.5</td>
<td>37.7</td>
<td>75.2</td>
<td>51.7</td>
</tr>
<tr>
<td>Weighted hinge</td>
<td>Single</td>
<td>22.6</td>
<td>11.1</td>
<td>47.4</td>
<td>32.3</td>
<td>69.1</td>
<td>26.9</td>
<td>35.9</td>
<td>15.4</td>
<td>35.8</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>Multiple</td>
<td>48.9</td>
<td>34.5</td>
<td>21.8</td>
<td>62.4</td>
<td>65.3</td>
<td>12.5</td>
<td>26.8</td>
<td>12.8</td>
<td>54.7</td>
<td>61.2</td>
</tr>
<tr>
<td>Weighted logistic</td>
<td>Single</td>
<td>43.7</td>
<td>45.4</td>
<td>44.7</td>
<td>51.4</td>
<td>76.6</td>
<td>27.8</td>
<td>18.5</td>
<td>18.9</td>
<td>49.7</td>
<td>61.7</td>
</tr>
<tr>
<td></td>
<td>Multiple</td>
<td>59.0</td>
<td>70.4</td>
<td>58.8</td>
<td>49.5</td>
<td>80.6</td>
<td>48.9</td>
<td>62.3</td>
<td>49.1</td>
<td>67.9</td>
<td>80.8</td>
</tr>
</tbody>
</table>

Table 8.2: Average Precision for gesture localisation on the external BBC test set.

Localisation results. The results in Table 8.2 show that the choice of loss function is very important, particularly when dealing with unbalanced classes and multiple positive labels per clip. For example, the cross-entropy loss works well for training with the single-label data, but fails to benefit from the more extensive multi-label data. Our best model trained using the weighted logistic loss compares well with the state-of-the-art.

The words that appear frequently in our dataset are different from those of Pfister et al. (2013) and Pfister et al. (2014a); therefore we must compare the performance
8.5. Conclusion 109

figures with caution. Our test set annotation methods and the evaluation protocol closely follow that of Pfister et al. (2014a). Comparing our PR curve (Figure 8.11) to Figure 7 of Pfister et al. (2014a), it is clear that our localisation performance is competitive with the strongly supervised method of Pfister et al. (2014a) (which uses a dictionary) and far exceeds the weakly supervised method of Pfister et al. (2013). For example, our average precision on ‘winter’ (which appears in both our work and theirs) is 81%, Pfister et al. (2014a) is 50% and Pfister et al. (2013) is 18% (note, the performance figures of Pfister et al. (2013, 2014a) are not available, so values are estimated from the graphs). The other words in our evaluation do not appear in Pfister et al. (2013, 2014a), but the performance figures are competitive with those that do. It is notable that the performance of strongly supervised methods can be matched, particularly when the network has never been explicitly trained to localise these signals.

Computation time. The classification and localisation of the salient regions is extremely fast. Both tasks for a 12-second window can be done with a single forward-backward pass at run time, which takes approximately 100ms for the hand shape network and 5ms for the motion network. This is dependent on the video being pre-tracked, which takes approximately 10-seconds for a 12-second clip on a GPU. In comparison, the method of Pfister et al. (2013) takes over 100 seconds to process a clip of the same length.

8.5 Conclusion

This chapter makes two key contributions: (i) we show that with a suitable input encoding and ConvNet architecture, it is possible to recognise signals in image time series using only very weak and noisy annotation; (ii) we have obtained state-of-the-art performance in localisation of the target signal from a network that is trained only to classify the signals. Our approach is directly applicable to any scenario that
involves identifying short target sequences given only clip level annotation.
Chapter 9

Speaker identification from audio

In this chapter, we depart from the problem of ‘what’ is being said, and explore methods for recognising ‘who’ is saying it.

Speaker recognition under noisy and unconstrained conditions is an extremely challenging topic. Applications of speaker recognition are many and varied, ranging from authentication in high-security systems and forensic tests, to searching for persons in large corpora of speech data. All such tasks require high speaker recognition performance under ‘real world’ conditions. This is an extremely difficult task due to both extrinsic and intrinsic variations; extrinsic variations include background chatter and music, laughter, reverberation, channel and microphone effects; while intrinsic variations are factors inherent to the speaker themself such as age, accent, emotion, intonation and manner of speaking, amongst others (Stoll, 2011).

As noted throughout this thesis, Deep Convolutional Neural Networks (CNNs) have given rise to substantial improvements in speech recognition, computer vision and related fields due to their ability to deal with real world, noisy datasets without the need for handcrafted features (He et al., 2015, Krizhevsky et al., 2012, Simonyan and Zisserman, 2015). One of the most important ingredients for the success of such methods, however, is the availability of large training datasets, which is lacking in the field of speaker recognition (Section 2.2.4).
This chapter has two goals. The first is to propose a fully automated and scalable pipeline for creating a large-scale ‘real world’ speaker identification dataset. By using visual active speaker identification and face verification, our method circumvents the need for human annotation completely. We use this method to curate VoxCeleb, a large-scale dataset with hundreds of utterances for over a thousand speakers. The second goal is to investigate different architectures and techniques for training deep CNNs on spectrograms extracted directly from the raw audio files with very little pre-processing, and compare our results on this new dataset with more traditional state-of-the-art methods.

VoxCeleb can be used for both speaker identification and verification. Speaker identification involves determining which speaker has produced a given utterance, if this is performed for a closed set of speakers then the task is similar to that of multi-class classification. Speaker verification on the other hand involves determining whether there is a match between a given utterance and a target model. We provide baselines for both tasks.

9.1 Dataset

Figure 9.1: Left: Data processing pipeline
VoxCeleb contains over 100,000 utterances for 1,251 celebrities, extracted from videos uploaded to YouTube. The dataset is gender balanced, with 55% of the speakers male. The speakers span a wide range of different ethnicities, accents, professions and ages.

Videos included in the dataset are shot in a large number of challenging multi-speaker acoustic environments. These include red carpet, outdoor stadium, quiet studio interviews, speeches given to large audiences, excerpts from professionally shot multimedia, and videos shot on hand-held devices. Crucially, all are degraded with real world noise, consisting of background chatter, laughter, overlapping speech, room acoustics, and there is a range in the quality of recording equipment and channel noise. Unlike the SITW dataset, both audio and video for each speaker is released. Table 9.1 gives the dataset statistics.

<table>
<thead>
<tr>
<th># of POIs</th>
<th>1,251</th>
</tr>
</thead>
<tbody>
<tr>
<td># of male POIs</td>
<td>690</td>
</tr>
<tr>
<td># of videos per POI</td>
<td>36 / 18 / 8</td>
</tr>
<tr>
<td># of utterances per POI</td>
<td>250 / 116 / 45</td>
</tr>
<tr>
<td>Length of utterances (s)</td>
<td>145.0 / 8.2 / 4.0</td>
</tr>
</tbody>
</table>

Table 9.1: VoxCeleb dataset statistics. Where there are three entries in a field, numbers refer to the maximum / average / minimum.

We use multi-stage approach for collecting the large-scale speaker recognition dataset, starting from YouTube videos. Using this fully automated pipeline, we have obtained hundreds of utterances for over a thousand different Persons of Interest (POIs). The pipeline is summarised in Figure 9.1 left, and key stages are discussed in the following paragraphs:

Stage 1. Candidate list of POIs. The first stage is to obtain a list of POIs. We start from the list of people that appear in the VGG Face dataset (Parkhi et al., 2015), which is based on an intersection of the most searched names in the Freebase knowledge graph, and the Internet Movie Data Base (IMDB). This list contains 2,622 identities, ranging from actors and sportspeople to entrepreneurs, of which approximately half are male and the other half female.
Figure 9.2: Precision-recall curves for the active speaker verification (using a 25-frame window) and the face verification steps, tested on standard benchmark datasets (Chakravarty and Tuytelaars, 2016, Parkhi et al., 2015). Operating points are shown in circles.

Stage 2. Downloading videos from YouTube. The top 50 videos for each of the 2,622 POIs are automatically downloaded using YouTube search. The word ‘interview’ is appended to the name of the POI in search queries to increase the likelihood that the videos contain an instance of the POI speaking, and to filter out sports or music videos. No other filtering is done at this stage.

Stage 3. Face tracking. This step is based on the video processing pipeline described in Chapter 3. The HOG-based face detector (King, 2009) is used to detect the faces in every frame of the video. Facial landmark positions are detected for each face detection using the regression tree based method of (Kazemi and Sullivan, 2014b). The shot boundaries are detected by comparing colour histograms across consecutive frames. Within each detected shot, face detections are grouped together into face tracks using a position-based tracker. This stage is closely related to the tracking
pipeline of Chapter 3 but optimised to reduce run-time given the very large number of videos to process.

Stage 4. Active speaker verification. The goal of this stage is to determine the audio-video synchronisation between mouth motion and speech in a video in order to determine which (if any) visible face is the speaker. This is done by using ‘SyncNet’, a two-stream CNN described in Chapter 4 which estimates the correlation between the audio track and the mouth motion of the video. This method is able to reject the clips that contain dubbing or voice-over.

Stage 5. Face verification. Active speaker face tracks are then classified into whether they are of the POI or not using the VGG Face CNN. This classification network is based on the VGG-16 CNN (Simonyan and Zisserman, 2015) trained on the VGG Face dataset (which is a filtered collection of Google Image Search results for the POI name). Verification is done by directly using this classification score with a high threshold.

Discussion. In order to ensure that our system is extremely confident that a person is speaking (Stage 4), and that they have been correctly identified (Stage 5) without any manual interference, we set very conservative thresholds in order to minimise the number of false positives. Precision-recall curves for both tasks on their respective benchmark datasets (Chakravarty and Tuytelaars, 2016; Parkhi et al., 2015) are shown in Figure 9.1 right, and the values at the operating point are given in Table 9.2. Employing these thresholds ensures that although we discard a lot of the downloaded videos, we can be reasonably certain that the dataset has few labelling errors. This ensures a completely automatic pipeline that can be scaled up to any number of speakers and utterances (if available) as required.
Table 9.2: Precision-recall values at the chosen operating points. \(^a\)Chakravarty and Tuytelal (2016); \(^b\)Parkhi et al. (2015);

<table>
<thead>
<tr>
<th>Task</th>
<th>Dataset</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active speaker verification</td>
<td>Columbia(^a)</td>
<td>1.000</td>
<td>0.613</td>
</tr>
<tr>
<td>Face verification</td>
<td>VGG Face(^b)</td>
<td>1.000</td>
<td>0.726</td>
</tr>
</tbody>
</table>

9.2 Models

Our aim is to move from techniques that require traditional hand-crafted features, to a CNN architecture that can choose the features required for the task of speaker recognition. This allows us to minimise the pre-processing of the audio data and hence avoid losing valuable information in the process.

Input features. All audio is first converted to single-channel, 16-bit streams at a 16kHz sampling rate for consistency. Spectrograms are then generated in a sliding window fashion using a hamming window of width 25ms, step 10ms and 1024-point FFT. This gives spectrograms of size 512 x 300 for 3 seconds of speech. Mean and variance normalisation is performed on every frequency bin of the spectrum. This normalisation is crucial, leading to an almost 10\% increase in classification accuracy, as shown in Table 9.6. No other speech-specific preprocessing (e.g. silence removal, voice activity detection, or removal of unvoiced speech) is used. These short time magnitude spectrograms are then used as input to the CNN.

Architecture. Since speaker identification under a closed set can be treated as a multiple-class classification problem, we base our architecture on the VGG-M (Chatfield et al., 2014) CNN, known for good classification performance on image data, with modifications to adapt to the spectrogram input. The fully connected \(fc6\) layer of dimension 9 x 8 (support in both dimensions) is replaced by two layers – a fully connected layer of 9 x 1 (support in the frequency domain) and an average pool layer with support 1 x \(n\), where \(n\) depends on the length of the input speech segment (for example for a 3 second segment, \(n = 8\)). This makes the network invariant to tem-
9.2. Models

poral position but not frequency, and at the same time keeps the output dimensions the same as those of the original fully connected layer. This also reduces the number of parameters from 319M in VGG-M to 67M in our network, which helps avoid overfitting. The complete CNN architecture is specified in Table 9.3.

Identification. Since identification is treated as a simple classification task, the output of the last layer is fed into a 1,251-way softmax in order to produce a distribution over the 1,251 different speakers.

Verification. For verification, feature vectors can be obtained from the classification network using the 1024 dimension fc7 vectors, and a cosine distance can be used to compare vectors. However, it is better to learn an embedding by training a Siamese network with a contrastive loss \[\text{Chopra et al.} \, 2005 \]. This is better suited to the verification task as the network learns to optimize similarity directly, rather than indirectly via a classification loss. For the embedding network, the last fully connected layer (fc8) is modified so that the output size is 256 instead of the number of classes. We compare both methods in the experiments.

Testing. A traditional approach to handling variable length utterances at test time is to break them up into fixed length segments (e.g. 3 seconds) and average the results on each segment to give a final class prediction. Average pooling, however allows the network to accommodate variable length inputs at test time, as the entire test utterance can be evaluated at once by changing the size of the apool6 layer. Not only is this more elegant, it also leads to an increase in classification accuracy, as shown in Table 9.6.

Implementation details and training. Our implementation is based on the deep learning toolbox MatConvNet \[\text{Vedaldi et al.} \, 2014 \]. The network is trained using batch normalisation \[\text{Ioffe and Szegedy} \, 2015 \] and all hyper-parameters (e.g. weight decay, learning rates) use the default values provided with the toolbox. To reduce
9.3 Experiments

Table 9.3: CNN architecture. The data size up to fc6 is for a 3-second input, but the network is able to accept inputs of variable lengths.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Support</th>
<th>Filt dim.</th>
<th># filts.</th>
<th>Stride</th>
<th>Data size</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv1</td>
<td>7×7</td>
<td>1</td>
<td>96</td>
<td>2×2</td>
<td>254×148</td>
</tr>
<tr>
<td>mpool1</td>
<td>3×3</td>
<td>-</td>
<td>-</td>
<td>2×2</td>
<td>126×73</td>
</tr>
<tr>
<td>conv2</td>
<td>5×5</td>
<td>96</td>
<td>256</td>
<td>2×2</td>
<td>62×36</td>
</tr>
<tr>
<td>mpool2</td>
<td>3×3</td>
<td>-</td>
<td>-</td>
<td>2×2</td>
<td>30×17</td>
</tr>
<tr>
<td>conv3</td>
<td>3×3</td>
<td>256</td>
<td>256</td>
<td>1×1</td>
<td>30×17</td>
</tr>
<tr>
<td>conv4</td>
<td>3×3</td>
<td>256</td>
<td>256</td>
<td>1×1</td>
<td>30×17</td>
</tr>
<tr>
<td>conv5</td>
<td>3×3</td>
<td>256</td>
<td>256</td>
<td>1×1</td>
<td>30×17</td>
</tr>
<tr>
<td>mpool5</td>
<td>5×3</td>
<td>-</td>
<td>-</td>
<td>3×2</td>
<td>9×8</td>
</tr>
<tr>
<td>fc6</td>
<td>9×1</td>
<td>256</td>
<td>4096</td>
<td>1×1</td>
<td>1×8</td>
</tr>
<tr>
<td>apool6</td>
<td>1×n</td>
<td>-</td>
<td>-</td>
<td>1×1</td>
<td>1×1</td>
</tr>
<tr>
<td>fc7</td>
<td>1×1</td>
<td>4096</td>
<td>1024</td>
<td>1×1</td>
<td>1×1</td>
</tr>
<tr>
<td>fc8</td>
<td>1×1</td>
<td>1024</td>
<td>1251</td>
<td>1×1</td>
<td>1×1</td>
</tr>
</tbody>
</table>

overfitting, we augment the data by taking random 3-second crops in the time domain during training. Using a fixed input length is also more efficient. For verification, the network is first trained for classification (excluding the test POIs for the verification task, see Section 9.3), and then all filter weights are frozen except for the modified last layer and the Siamese network trained with contrastive loss. Choosing good pairs for training is very important in metric learning. We randomly select half of the negative examples, and the other half using Hard Negative Mining, where we only sample from the hardest 10% of all negatives.

9.3 Experiments

This section describes the experimental setup for both speaker identification and verification, and compares the performance of our devised CNN baseline to a number of traditional state of the art methods on VoxCeleb.
9.3. Experiments

9.3.1 Experimental setup

Speaker identification. For identification, the training and the testing are performed on the same POIs. On each POI, we reserve the speech segments from one video for test. The test video contains at least 5 non-overlapping segments of speech. For identification, we report *top-1* and *top-5* accuracies. The statistics are given in Table 9.4.

Speaker verification. For verification, all POIs whose name starts with an ‘E’ are reserved for testing, since this gives a good balance of male and female speakers. These POIs are not used for training the network, and are only used at test time. The statistics are given in Table 9.5.

Two key performance metrics are used to evaluate system performance for the verification task. The metrics are similar to those used by existing datasets and challenges, such as NIST SRE12 [Greenberg et al., 2013] and SITW [McLaren et al., 2016]. The primary metric is based on the cost function C_{det}

$$C_{det} = C_{miss} \times P_{miss} \times P_{tar} + C_{fa} \times P_{fa} \times (1 - P_{tar}) \quad (9.1)$$

where we assume a prior target probability P_{tar} of 0.01 and equal weights of 1.0 between misses C_{miss} and false alarms C_{fa}. The primary metric, C_{min}^{det}, is the minimum value of C_{det} for the range of thresholds. The alternative performance measure used here is the Equal Error Rate (EER) which is the rate at which both acceptance and rejection errors are equal. This measure is commonly used for identity verification systems.

<table>
<thead>
<tr>
<th>Set</th>
<th># POIs</th>
<th># Vid. / POI</th>
<th># Utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dev</td>
<td>1,251</td>
<td>17.0</td>
<td>139,124</td>
</tr>
<tr>
<td>Test</td>
<td>1,251</td>
<td>1.0</td>
<td>6,255</td>
</tr>
</tbody>
</table>

Table 9.4: Development and test set statistics for identification.
9.3. Experiments

<table>
<thead>
<tr>
<th>Set</th>
<th># POIs</th>
<th># Vid. / POI</th>
<th># Utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dev</td>
<td>1,211</td>
<td>18.0</td>
<td>140,664</td>
</tr>
<tr>
<td>Test</td>
<td>40</td>
<td>17.4</td>
<td>4,715</td>
</tr>
</tbody>
</table>

Table 9.5: Development and test set statistics for verification.

9.3.2 Baselines

GMM-UBM. The GMM-UBM system uses MFCCs of dimension 13 as input. Cepstral mean and variance normalisation (CMVN) is applied on the features. Using the conventional GMM-UBM framework, a single speaker-independent universal background model (UBM) of 1024 mixture components is trained for 10 iterations from the training data.

I-vectors/PLDA. Gender independent i-vector extractors (Dehak et al., 2011) are trained on the VoxCeleb dataset to produce 400-dimensional i-vectors. Probabilistic LDA (PLDA) (Ioffe, 2006) is then used to reduce the dimension of the i-vectors to 200.

Inference. For identification, a one-vs-rest binary SVM classifier is trained for each speaker m ($m \in 1...K$). All feature inputs to the SVM are L2 normalised and a held out validation set is used to determine the C parameter (determines trade off between maximising the margin and penalising training errors). Classification during test time is done by choosing the speaker corresponding to the highest SVM score. The PLDA scoring function (Ioffe, 2006) is used for verification.

9.3.3 Results

Results are given in Tables 9.6 and 9.7. For both speaker recognition tasks, the CNN provides superior performance to the traditional state-of-the-art baselines.

For identification we achieve an 80.5% top-1 classification accuracy over 1,251 different classes, almost 20% higher than traditional state of the art baselines. The CNN
architecture uses the average pooling layer for variable length test data. We also compare to two variants: ‘CNN-fc-3s’, this architecture has a fully connected fc6 layer, and divides the test data into 3s segments and averages the scores. As is evident there is a considerable drop in performance compared to the average pooling original – partly due to the increased number of parameters that must be learnt; ‘CNN-fc-3s no var. norm.’, this is the CNN-fc-3s architecture without the variance normalization pre-processing of the input (the input is still mean normalized). The difference in performance between the two shows the importance of variance normalization for this data.

For verification, the margin over the baselines is narrower, but still a significant improvement, with the embedding being the crucial step.

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Top-1 (%)</th>
<th>Top-5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-vectors + SVM</td>
<td>49.0</td>
<td>56.6</td>
</tr>
<tr>
<td>I-vectors + PLDA + SVM</td>
<td>60.8</td>
<td>75.6</td>
</tr>
<tr>
<td>CNN-fc-3s no var. norm.</td>
<td>63.5</td>
<td>80.3</td>
</tr>
<tr>
<td>CNN-fc-3s</td>
<td>72.4</td>
<td>87.4</td>
</tr>
<tr>
<td>CNN</td>
<td>80.5</td>
<td>92.1</td>
</tr>
</tbody>
</table>

Table 9.6: Results for identification on VoxCeleb (higher is better). The different CNN architectures are described in Section 9.2.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>C^\min_{det}</th>
<th>EER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM-UBM</td>
<td>0.80</td>
<td>15.0</td>
</tr>
<tr>
<td>I-vectors + PLDA</td>
<td>0.73</td>
<td>8.8</td>
</tr>
<tr>
<td>CNN-1024D</td>
<td>0.75</td>
<td>10.2</td>
</tr>
<tr>
<td>CNN-256D Embedding</td>
<td>0.71</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Table 9.7: Results for verification on VoxCeleb (lower is better).

9.4 Conclusions

We provide a fully automated and scalable pipeline for audio data collection and use it to create a large-scale speaker identification dataset called VoxCeleb, with 1,251 speakers and over 100,000 utterances. In order to establish benchmark performance,
we develop a novel CNN architecture with the ability to deal with variable length audio inputs, which outperforms traditional state-of-the-art methods for both speaker identification and verification on this dataset.
Chapter 10

Conclusion

We conclude this thesis by summarising the achievements of the work, as well as providing suggestions for future research.

10.1 Achievements

In this thesis, we have made significant advances in five areas: (i) lip synchronisation and active speaker detection; (ii) lip reading and audio-visual speech recognition; (iii) visual speech synthesis; (iv) sign language recognition; (v) speaker recognition. We have also contributed several datasets for further research in the field.

In Chapter 3 we described the fully automated pipeline to generate a large-scale audio-visual corpus from BBC television videos, aligned with the corresponding transcript. This data has formed the basis of our research in Chapters 4, 5, 6 and 7 and has led to the release of two datasets, LRW and MV-LRS, in 2017. Researchers from other universities have already published a number of papers based on these datasets in the first months since their release [Stafylakis and Tzimiropoulos 2017a,b; Torfi et al. 2017].

Chapter 4 introduced a two-stream CNN model that can learn a joint embedding of the sound and the mouth images from unlabelled data. We applied the trained network
to the tasks of audio-to-video synchronisation and active speaker detection, and in the latter we set a new state-of-the-art on a standard benchmark dataset (Chakravarty and Tuytelaars 2016). The embedding features learnt here also provides powerful representations for related applications such as lip reading.

We then moved on to investigate deep learning models for the task of automated lip reading. In Chapter 5, we explored a number of ConvNet architectures for recognising hundreds of individual words from the large-scale dataset generated in Chapter 3. In Chapter 6, we built on the work of the previous chapter and proposed an attention-based model that is able to lip read natural sentences from in the wild videos. The performance of this model beats a professional lip reader on videos from BBC television, and we also demonstrate that if audio is available, then visual information helps to improve automated speech recognition (ASR) performance. This advance is of significant practical applicability, since it can help to boost the performance of ASR systems in noisy environments which is the main weakness of the existing systems.

In Chapter 7, we developed a CNN model and training strategy for generating talking faces from audio. This model is trained using self-supervised training strategy similar to that used in Chapter 4. To our knowledge, this is the first work on generation of talking faces to use an end-to-end image generation method, rather than frame reselection or mesh-based methods.

Chapter 8 presented ConvNet-based architectures and representations that can be used for recognising short temporal signals in time series, and for localising the signal. This is demonstrated for two problems with different levels of difficulty: (i) speech recognition where the supervision is weak, and (ii) sign language recognition where the supervision is weak and noisy. We have shown that the performance far exceeds previous work in this area in terms of supervisory requirements and generalization across signers.
Finally, Chapter 9 introduced a new dataset and deep learning models for speaker recognition. Previous works for speaker identification have been limited to constrained conditions, due to the synthetic nature of existing datasets. Here, we collected a new large-scale speaker recognition dataset collected from ‘in the wild’ videos using an automated pipeline, and proposed ConvNet architectures that outperform traditional baselines for speaker recognition. The dataset collected in this chapter has been released to the public, and has been downloaded by over 500 users.

10.2 Suggestion for future research

Next, we discuss possibilities for future research.

Lip reading and audio-visual speech recognition. There are several interesting extensions to consider: first, the attention mechanism that provides the alignment in Chapter 6 is unconstrained, but in practice should always move monotonically from left to right. This monotonicity could be incorporated as a soft or hard constraint; second, the sequence-to-sequence model is used in batch mode – decoding a sentence given the entire corresponding lip sequence. Instead, a more on-line architecture could be used, where the decoder does not have access to the part of the lip sequence in the future; third, whilst the current system works well for the domains that are seen during training (e.g. news), it may not generalise well to other settings for which it might be difficult to obtain audio-visual training data. Here, external language models could be introduced to facilitate domain transfers to scenarios in which only the text is available for training; finally, it is possible that research of this type could discern important discriminative cues that are beneficial for teaching lip reading to the hard of hearing.

Visual speech synthesis. The most beneficial extension to Chapter 7 would be improvements to the image re-blending, such that the synthesised talking face can be
blended back to the target image to generate a natural looking video. It would be interesting to explore modifications to the Speech2Vid model such that the full image is generated. Recent architectures introduced for inpainting (Pathak et al., 2016) or image style transfer works (Gatys et al., 2016) could form the basis of this extension. Another clear extension is to add a quantitative performance measure of our models. This is not a straightforward task as there is no definitive performance measure of generative models for a specific domain. In natural image generation, Salimans et al. (2016) proposed a scoring system dependent on an image’s softmax output when fed into a network trained on a classification task e.g. the inception network trained on ImageNet (Szegedy et al., 2015). One possible option is to have a lip-specific inception score using networks trained on a lip-specific task (Chapter 6).

Gesture and sign language recognition. The ultimate goal here is continuous translation of sign languages, however there are many challenges as described in Chapter 1.2. In particular, the poor signal-to-noise ratio in the training data makes the learning very difficult. A possible extension would be to apply attention models to these problems. Attention has shown promising performance in many fields (Bahdanau et al., 2015, Chan et al., 2015, Chung et al., 2017b, Sharma et al., 2015, Xu et al., 2015), by focussing on only the parts of the input that are relevant. There is also potential to use the technique described in Chapter 8 for localising the salient signals, which could help produce word-level or sentence-level alignment, hence improving the quality of supervision.

Speaker recognition. There is a number of large-scale datasets for facial recognition that are available to the public, such as VGGFace2 (Cao et al., 2017) and LFW (Huang et al., 2007), however there is no equivalent in speaker recognition apart from the dataset introduced in Chapter 9. By reusing the pipeline introduced here, it is possible to build a much larger dataset for training. It would also be useful to explore further CNN architectures for speaker recognition, such as dilated convolutions (Oord et al.,
2016) which has proven effective for speech related applications.

Recognising unconstrained gestures and multi-modal speech recognition. This thesis addressed the problem of recognising visual speech, and formalised gestures in the form of British Sign Language. It would be interesting to explore the possibility of recognising non-formal gestures such as facial expressions or body language, and combine this visual information with ASR and lip reading to develop a machine that can recognise and understand truly multimodal human communications.
Bibliography

Y. Fu, S. Yan, and T. S. Huang. Classification and feature extraction by simplex-
ization. *Information Forensics and Security, IEEE Transactions on*, 3(1):91–100,
2008.

G. Galatas, G. Potamianos, and F. Makedon. Audio-visual speech recognition in-
corporating facial depth information captured by the kinect. In *Signal Processing

TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-

P. Garrido, L. Valgaerts, H. Sarmadi, I. Steiner, K. Varanasi, P. Pérez, and
C. Theobalt. Vdub: Modifying face video of actors for plausible visual alignment
Wiley Online Library, 2015.

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional

K. J. Geras, A.-r. Mohamed, R. Caruana, G. Urban, S. Wang, O. Aslan, M. Phillip-

G. Papandreou, I. Kokkinos, and P. Savalle. Untangling local and global deformations in deep convolutional networks for image classification and sliding window
evaluation of machine translation. In Proceedings of the 40th annual meeting on

2015.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, pages 1310–1318,
2013.

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders:

database for multimodal human-computer interface research. In Proc. ICASSP,

Y. Pei, T.-K. Kim, and H. Zha. Unsupervised random forest manifold alignment
for lipreading. In Proceedings of the IEEE International Conference on Computer

A. Peregudov, K. Glasman, and A. Logunov. Relative timing of sound and vision:

